【題目】在平面直角坐標系中,點O為原點,點A的坐標為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達式

(2)若α為銳角,tanα=,當AE取得最小值時,求正方形OEFG的面積;

(3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為:1?若能,求點P的坐標;若不能,試說明理由

【答案】(1);(2);(3)存在,P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).

【解析】

試題分析:(1)如圖1,過點E作EH⊥OA于點H,EF與y軸的交點為M.

∵OE=OA,α=60°,∴△AEO為正三角形,∴OH=3,EH==,E(﹣3,).

∵∠AOM=90°,∴∠EOM=30°.

在Rt△EOM中,∵cos∠EOM=,即,∴OM=M(0,).

設直線EF的函數(shù)表達式為,∵該直線過點E(﹣3,),∴=,解得,所以,直線EF的函數(shù)表達式為

(2)如圖2,射線OQ與OA的夾角為α( α為銳角,tanα=).

無論正方形邊長為多少,繞點O旋轉角α后得到正方

形OEFG的頂點E在射線OQ上,∴當AE⊥OQ時,線段AE的長最。

在Rt△AOE中,設AE=a,則OE=2a,∴,解得,(舍去),∴OE=2a=,∴S正方形OEFG==

(3)設正方形邊長為m.

當點F落在y軸正半軸時.如圖3,當P與F重合時,△PEO是等腰直角三角形,有

在Rt△AOP中,∠APO=45°,OP=OA=6,∴點P1的坐標為(0,6).

在圖3的基礎上,當減小正方形邊長時,點P在邊FG 上,△OEP的其中兩邊之比不可能為:1;

當增加正方形邊長時,存在(圖4)和(圖5)兩種情況.

如圖4,△EFP是等腰直角三角形,有=,即=,此時有AP∥OF.

在Rt△AOE中,∠AOE=45°,∴OE=OA=,∴PE=OE=12,PA=PE+AE=18,∴點P2的坐標為(﹣6,18).

如圖5,過P作PR⊥x軸于點R,延長PG交x軸于點H.設PF=n.

在Rt△POG中,==,在Rt△PEF中,=,當時,∴=,得n=2m.

∵EO∥PH,∴△AOE∽△AHP,∴,∴AH=4OA=24,即OH=18,∴m=

在等腰Rt△PRH中,PR=HR=PH=36,∴OR=RH﹣OH=18,∴點P3的坐標為(﹣18,36).

當點F落在y軸負半軸時,如圖6,P與A重合時,在Rt△POG中,OP=OG,又∵正方形OGFE中,OG=OE,∴OP=OE,點P4的坐標為(﹣6,0).

在圖6的基礎上,當正方形邊長減小時,△OEP的其中兩邊之比不可能為:1;當正方形邊長增加時,存在(圖7)這一種情況.

如圖7,過P作PR⊥x軸于點R,設PG=n.

在Rt△OPG中,=,在Rt△PEF中,==

時,∴,=,∴n=2m,由于NG=OG=m,則PN=NG=m,∵OE∥PN,∴△AOE∽△ANP,∴=1,即AN=OA=6.

在等腰Rt△ONG中,ON=m,∴12=m,∴m=,在等腰Rt△PRN中,RN=PR=6,∴點P5的坐標為(﹣18,6).

所以,△OEP的其中兩邊的比能為:1,點P的坐標是:P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在ABCD中,一組鄰角的差為80°則它的四個內角分別為__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n )的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是(
A.4n
B.4m
C.2(m+n)
D.4(m﹣n)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b互為相反數(shù),c,d互為倒數(shù),|e|= ,則代數(shù)式5(a+b)2+ cd﹣2e的值為(
A.﹣
B.
C. 或﹣
D.﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣ x+1的圖象與x軸、y軸分別交于點A、B,以AB為邊在第一象限內做等邊△ABC

(1)求△ABC的面積和點C的坐標;
(2)如果在第二象限內有一點P(a, ),試用含a的代數(shù)式表示四邊形ABPO的面積.
(3)在x軸上是否存在點M,使△MAB為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB上,將△BCD繞點C按順時針方向旋轉90°后得△ECF.

(1)補充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算: ①﹣20+(﹣14)﹣(﹣18)﹣13
②(﹣1)÷(﹣1 )×3
③6÷(﹣ +
④﹣16﹣|﹣5|+2×(﹣ 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a,b,是平面上任意二條直線,交點可以有( )

A. 1個或2個或3 B. 0個或1

C. 1個或2 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tanACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點B的坐標.

查看答案和解析>>

同步練習冊答案