【題目】如圖,在□ABCD中,AD=2AB,FAD的中點,作CEAB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中不一定成立的是(

A. SBEC=2SCEF B. EF=CF

C. DCF=BCD D. DFE=3AEF

【答案】A

【解析】A、延長EF,交CD延長線于M,

∵四邊形ABCD是平行四邊形,

ABCD,

∴∠A=MDF

FAD中點,

AF=FD

AEFDFM中,

∵∠A=FDM

AF=DF,

AFE=DFM

∴△AEF≌△DMFASA),

EF=FM

SEFC=SCFM,

MCBE

SBEC2SEFC

SBEC=2SCEF錯誤,符合題意;

B∵△AEF≌△DMFASA),

FE=MFAEF=M,

CEAB

∴∠AEC=90°,

∴∠AEC=ECD=90°,

FM=EF,

FC=FM,故此選項正確,不合題意;

C、FAD的中點,

AF=FD,

ABCD中,AD=2AB,

AF=FD=CD

∴∠DFC=DCF,

ADBC

∴∠DFC=FCB,

∴∠DCF=BCF

∴∠DCF=BCD,故此選項正確,不合題意;

D、設(shè)∠FEC=x,則∠FCE=x,

∴∠DCF=DFC=90°-x

∴∠EFC=180°-2x

∴∠EFD=90°-x+180°-2x=270°-3x,

∵∠AEF=90°-x

∴∠DFE=3AEF,故此選項正確,不合題意.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校剛完成一批結(jié)構(gòu)相同的學(xué)生宿舍的修建,這些宿舍地板需要鋪瓷磚,一天4名一級技工去鋪4個宿舍,結(jié)果還剩12 m2地面未鋪瓷磚;同樣時間內(nèi)6名二級技工鋪4個宿舍剛好完成,已知每名一級技工比二級技工一天多鋪3 m2瓷磚.

(1)求每個宿舍需要鋪瓷磚的地板面積.

(2)現(xiàn)該學(xué)校有20個宿舍的地板和36 m2的走廊需要鋪瓷磚,某工程隊有4名一級技工和6名二級技工,一開始有4名一級技工來鋪瓷磚,3天后,學(xué)校根據(jù)實際情況要求2天后必須完成剩余的任務(wù),所以決定加入一批二級技工一起工作,問需要再安排多少名二級技工才能按時完成任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,A表示1,現(xiàn)將點A沿數(shù)軸做如下移動第一次將點A向左移動3個單位長度到達(dá)點A1,2次將點A1向右平移6個單位長度到達(dá)點A23次將點A2向左移動9個單位長度到達(dá)點A3則第6次移動到點A6,A6在數(shù)軸上對應(yīng)的實數(shù)是_____;按照這種規(guī)律移動下去,2017次移動到點A2017,A2017在數(shù)軸上對應(yīng)的實數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長.

(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.

(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.
已知線段a,c如圖.
小蕓的作法如下:
①取AB=c,作AB的垂直平分線交AB于點O;
②以點O為圓心,OB長為半徑畫圓;
③以點B為圓心,a長為半徑畫弧,與⊙O交于點C;
④連接BC,AC.
則Rt△ABC即為所求.
老師說:“小蕓的作法正確.”
請回答:小蕓的作法中判斷∠ACB是直角的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+2的圖象與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,且點A的坐標(biāo)為(1,m).
(1)求反比例函數(shù)y=(k≠0)的表達(dá)式;
(2)若P是y軸上一點,且滿足△ABP的面積為6,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程4(2﹣x)+x=ax的解為正整數(shù),且關(guān)于x的不等式組 有解,則滿足條件的所有整數(shù)a的值之和是( 。

A. 4 B. 0 C. ﹣1 D. ﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x是實數(shù),現(xiàn)在我們用{x}表示不小于x的最小整數(shù),如{3.2}=4,{﹣2.6}=﹣2,{4}=4,{﹣5}=5.在此規(guī)定下任一實數(shù)都能寫出如下形式:x={x}﹣b,其中0≤b<1.

(1)直接寫出{x}與x,x+1的大小關(guān)系是   (由小到大);

(2)根據(jù)(1)中的關(guān)系式解決下列問題:

求滿足{3x+11}=6的x的取值范圍;

解方程:{3.5x+2}=2x﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y1=x+my軸交于點A0,6),直線l2y=kx+1分別與x軸交于點B2,0),與y軸交于點C,兩條直線交點記為D

1m=   ,k=   

2)求兩直線交點D的坐標(biāo);

3)根據(jù)圖象直接寫出y1y2時自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案