【題目】閱讀下列材料并填空

1)探究:平面上有n個點(n>2)且任意3個點不在同一條直線上,經(jīng)過每兩個點畫一條直線,一共能畫多少條直線? 根據(jù)基本事實,我們知道兩點確定一條直線,平面上有2個點時,可以畫條直線,平面內(nèi)有3個不在同一直線上點時,可畫條直線,那么平面上有4個不在同一直線上的點時,可以畫 , 平面上有5個不在同一直線上的點時,可以畫 ,以此類推,平面上有n個不在同一直線上的點時,可以畫

2)運用:某足球比賽中有10個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),一共進行多少場比賽?

【答案】16,10;(245

【解析】

本題要先從簡單的例子入手得出一般化的結(jié)論,然后根據(jù)得出的規(guī)律去求特定的值.

解:(1)平面內(nèi)有4個點時,一共可以畫條直線,

平面內(nèi)有5個點時,一共可以畫條直線,

平面內(nèi)有n個點時,一共可以畫,

2)某足球比賽中有10個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),一共要進行場比賽.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在左側(cè)的一點,且A,B兩點間的距離為10。動點P從點A出發(fā),以每秒6個單位長度的度沿數(shù)軸向左勻速運動,設(shè)運動時間為t秒。

1)數(shù)軸上點B表示的數(shù)是______;當點P運動到AB的中點時,它所表示的數(shù)是_____。

2)動點Q從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),求:

①當點P運動多少秒時,點P追上點Q?

②當點P運動多少秒時,點P與點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)在下列橫線上用含有a,b的代數(shù)式表示相應圖形的面積.

   ;    ;    ;    

2)通過拼圖,你發(fā)現(xiàn)前三個圖形的面積與第四個圖形面積之間有什么關(guān)系?請用數(shù)學式子表示   ;

3)利用(2)的結(jié)論計算992+2×99×1+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在等邊三角形ABC中,點MBC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NCAB的位置關(guān)系為__________;

(2)深入探究

如圖2,在等腰三角形ABC中,BA=BC,點MBC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;

(3)拓展延伸

如圖3,在正方形ADBC中,AD=AC,點MBC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)以a,b為直角邊,c為斜邊作兩個全等的Rt△ABERt△FCD拼成如圖1所示的圖形,使B,E,F,C四點在一條直線上(此時E,F重合),可知△ABE △FCD,AEDF,請你證明:;

(2)在(1)中,固定△FCD,再將△ABE沿著BC平移到如圖2的位置(此時B,F重合),請你重新證明:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)如圖,在菱形ABCD中,F為邊BC的中點,DF與對角線AC交于點M,過MME⊥CD于點E, ∠BAC=∠CDF.

(1)求證BC=2CE;

(2)求證AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E、F分別是平行四邊形ABCD的邊AB、CD上的兩點,且∠CBF=ADE.(1)求證:ADE≌△CBF;

(2)判定四邊形DEBF是否是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(5,0)兩點,直線y=﹣x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PFx軸于點F,交直線CD于點E.設(shè)點P的橫坐標為m.

(1)求拋物線的解析式;

(2)若PE=5EF,求m的值;

(3)若點E′是點E關(guān)于直線PC的對稱點,是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等邊三角形ABC的頂點B,C的坐標分別為(1,0),(3,0),過坐標原點O的一條直線分別與邊AB,AC交于點M,N,若OMMN,則點M的坐標為______________

查看答案和解析>>

同步練習冊答案