【題目】如圖,在平行四邊形中,,,, 垂足為,在平行四邊形的邊上有一點(diǎn),且.將平行四邊形折疊,使點(diǎn)與點(diǎn)合,折痕所在直線與平行四邊形交于點(diǎn)、

(1)求的長(zhǎng);

(2)請(qǐng)補(bǔ)全圖形并求折痕的長(zhǎng).

【答案】1;(2)補(bǔ)全圖形見(jiàn)解析;折痕的長(zhǎng)為5或

【解析】

1)在RtADE中,,求得,再根據(jù)勾股定理即可求解;

2)分點(diǎn)OABAD兩類討論,當(dāng)點(diǎn)上時(shí),可得是等邊三角形.求得;點(diǎn)點(diǎn)OAD上時(shí),過(guò)點(diǎn)、分別作,

垂足分別為、, 連接.求出,,根據(jù)折疊性質(zhì),結(jié)合勾股定理,求出,進(jìn)而求出,利用面積法即可求得

(1)∵, ,

.

.

.

(2)如圖1所示,當(dāng)點(diǎn)上時(shí),

, ,

.

∵四邊形是平行四邊形,

, .

.

∵將平行四邊形折疊,使點(diǎn)與點(diǎn)重合,

∴折痕垂直平分,即,

.

∵折痕與平行四邊形的邊交于點(diǎn),

∴點(diǎn)與點(diǎn)重合.

.

.

.

,

是等邊三角形.

.

如圖2所示,當(dāng)點(diǎn)上時(shí),

過(guò)點(diǎn)分別作, ,

垂足分別為、, 連接,.

∵四邊形是平行四邊形,

,

,

, ,

.

∵在中,

.

,

.

∴在中,,

由折疊可知,,.

∴在中,

.

.

,,

.

∴四邊形為矩形.

,

.

綜上所述,折痕的長(zhǎng)為5或.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C在⊙O上,∠ABC=29°,過(guò)點(diǎn)C作⊙O的切線交OA的延長(zhǎng)線于點(diǎn)D,則∠D的大小為( )

A.29°
B.32°
C.42°
D.58°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,自來(lái)水廠A和村莊B在小河l的兩側(cè),現(xiàn)要在A,B間鋪設(shè)一條輸水管道.為了搞好工程預(yù)算,需測(cè)算出A,B間的距離.一小船在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q處,測(cè)得A位于北偏西49°方向,B位于南偏西41°方向.

(1)線段BQ與PQ是否相等?請(qǐng)說(shuō)明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AGF=ABC,1+2=180°.

(1)試判斷BFDE的位置關(guān)系,并說(shuō)明理由;

(2)BFAC,2=150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個(gè)問(wèn)題: 如圖1,在矩形中,對(duì)角線相交于點(diǎn),且,點(diǎn)、分別是、、的中點(diǎn),連接所、、

求證:是等邊三角形.

小明經(jīng)探究發(fā)現(xiàn),連接、(如圖2),從而可證, ,使問(wèn)題得到解決.

(1)請(qǐng)你按照小明的探究思路,完成他的證明過(guò)程;

參考小明思考問(wèn)題的方法或用其他的方法,解決下面的問(wèn)題:

(2)如圖3,在四邊形中, , , 對(duì)角線、相交于點(diǎn),且(),點(diǎn)、分別是、的中點(diǎn),連接、、

①否存在與相等的線段?若存在,請(qǐng)找出并證明;若不存在,說(shuō)明理由.

②求的度數(shù).(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0, ).

(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè), ,……, ,(n為正整數(shù))

(1)試說(shuō)明是8的倍數(shù);

(2)若△ABC的三條邊長(zhǎng)分別為、為正整數(shù))

①求的取值范圍.

②是否存在這樣的,使得△ABC的周長(zhǎng)為一個(gè)完全平方數(shù),若存在,試舉出一例,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P在⊙O的直徑BA延長(zhǎng)線上,PC與⊙O相切,切點(diǎn)為C,點(diǎn)D在⊙O上,連接PD、BD,已知PC=PD=BC.下列結(jié)論:
①PD與⊙O相切;
②四邊形PCBD是菱形;
③PO=AB;
④∠PDB=120°.
其中,正確的個(gè)數(shù)是( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】能夠鋪滿地面的正多邊形組合是(    )

A. 正三角形和正五邊形

B. 正方形和正六邊形

C. 正方形和正八邊形

D. 正六邊形和正八邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案