【題目】下列函數(shù)中,y隨x增大而減小的有_____(填序號).
①y=;②y=x﹣2;③y=﹣3x+1;④y=;⑤y=.
【答案】①③⑤.
【解析】
根據(jù)一次函數(shù)y=kx+b的性質(zhì):k>0,y隨x的增大而增大,函數(shù)從左到右上升;k<0,y隨x的增大而減小,函數(shù)從左到右下降;反比例函數(shù)y=的性質(zhì):(1)反比例函數(shù)y=xk(k≠0)的圖象是雙曲線;(2)當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減;(3)當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大進行分析即可.
①y= (x>0)中的k=1>0,y隨x增大而減小,故正確;
②y=x-2中的k=1>0,y隨x增大而增大,故錯誤;
③y=-3x+1中的k=-3<0,y隨x增大而減小,故正確;
④y=中的k=5>0,在每一個象限內(nèi)y隨x增大而減小,故錯誤;
⑤y= (x<0)中的k=2>0,當(dāng)x<0時,在第三象限內(nèi)y隨x增大而減小,故正確;
故答案為:①③⑤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學(xué)生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進行整理,得到下列不完整的統(tǒng)計圖表。
組別 | 分?jǐn)?shù)段 | 頻次 | 頻率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
請根據(jù)所給信息,解答以下問題:
(1)表中a=___,b=___;
(2)請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);
(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的月日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購.經(jīng)調(diào)查:購買臺甲型設(shè)備比購買臺乙型設(shè)備多花萬元,購買臺甲型設(shè)備比購買臺乙型設(shè)備少花萬元.
(1)求甲、乙兩種型號設(shè)備每臺的價格;
(2)該公司經(jīng)決定購買甲型設(shè)備不少于臺,預(yù)算購買節(jié)省能源的新設(shè)備資金不超過萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為噸.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若千個整數(shù)點,其順序按圖中“”方向排列,如….根據(jù)這個規(guī)律探索可得,第個點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠C=90°,∠B=30°,AD是△ABC的角平分線.
(1)求證:BD=2CD;
(2)若CD=2,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七、八年級各選名同學(xué)參加“創(chuàng)全國文明城市”知識競賽,計分分制,選手得分均為整數(shù),成績達到分或分以上為合格,達到分或分以上為優(yōu)秀,這次競賽后,七、八年級兩支代表隊成績分布的條形統(tǒng)計圖和成績分析表如下,其中七年級代表隊得分、分選手人數(shù)分別為,.
隊列 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級 | |||||
八年級 |
(1)根據(jù)圖表中的數(shù)據(jù),求,的值.
(2)直接寫出表中的 , .
(3)你是八年級學(xué)生,請你給出兩條支持八年級隊成績好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點的坐標(biāo)為,,且.
求經(jīng)過,,三點的拋物線的解析式.
在中拋物線的對稱軸上是否存在點,使的周長最?若存在,求出點的坐標(biāo);若不存在,請說明理由.
若點為拋物線上一點,點為對稱軸上一點,是否存在點,使得,,,構(gòu)成的四邊形是平行四邊形?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com