【題目】中秋佳節(jié)時,我國有賞月和吃月餅的傳統(tǒng),某校數(shù)學興趣小組為了了解本校學生喜愛月餅的情況,隨機抽取了60名同學進行問卷調查,經過統(tǒng)計后繪制了兩幅尚不完整的統(tǒng)計圖.
(注:參與問卷調查的每一位同學在任何一種分類統(tǒng)計中只有一種選擇)
請根據(jù)統(tǒng)計圖完成下列問題:
(1)扇形統(tǒng)計圖中,“很喜歡”的部分所對應的圓心角為__________度;條形統(tǒng)計圖中,很喜歡“豆沙”月餅的學生有__________人;
(2)若該校共有學生900人,請根據(jù)上述調查結果,估計該校學生中“很喜歡”和“比較喜歡”月餅的共有__________人.
(3)甲同學最愛吃云腿月餅,乙同學最愛吃豆沙月餅,現(xiàn)有重量、包裝完全一樣的云腿、豆沙、蓮蓉、蛋黃四種月餅各一個,讓甲、乙每人各選一個,請用畫樹狀圖法或列表法,求出甲、乙兩人中有且只有一人選中自己最愛吃的月餅的概率.
【答案】(1)126°,4(2)675(3)
【解析】
(1)根據(jù)“很喜歡”的部分占的百分比,計算所對應的圓心角;
(2)用樣本估計總體的思想即可解決問題.
(3)畫出樹狀圖,根據(jù)概率的定義即可解決.
解:(1)∵“很喜歡”的部分占的百分比為:1﹣25%﹣40%=35%,
∴扇形統(tǒng)計圖中,“很喜歡”的部分所對應的圓心角為:360°×35%=126°;
∵“很喜歡”月餅的同學數(shù):60×35%=21(人),
∴條形統(tǒng)計圖中,喜歡“豆沙”月餅的學生數(shù):21﹣6﹣3﹣8=4(人),
故答案分別為126°,4.
(2)900名學生中“很喜歡”的有900×35%=315人,900名學生中“比較喜歡”的有900×40%=360人,
∴估計該校學生中“很喜歡”和“比較喜歡”月餅的共有675人.
故答案為675.
(3)為了表示方便,記云腿、豆沙、蓮蓉、蛋黃四種月餅分別為A、B、C、D.畫出的樹狀圖如圖所示,
∴甲、乙兩人中有且只有一人選中自己最愛吃的月餅的概率==
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組:請結合題意填空,完成本題的解答:
(1)解不等式①,得: ;
(2)解不等式②得: ;
(3)把不等式①和②的解集在數(shù)軸上表示出來;
(4)原不等式組的解集為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為倡導健康環(huán)保,自帶水杯已成為一種好習慣,某超市銷售甲,乙兩種型號水杯,進價和售價均保持不變,其中甲種型號水杯進價為25元/個,乙種型號水杯進價為45元/個,下表是前兩月兩種型號水杯的銷售情況:
時間 | 銷售數(shù)量(個) | 銷售收入(元)(銷售收入=售價×銷售數(shù)量) | |
甲種型號 | 乙種型號 | ||
第一月 | 22 | 8 | 1100 |
第二月 | 38 | 24 | 2460 |
(1)求甲、乙兩種型號水杯的售價;
(2)第三月超市計劃再購進甲、乙兩種型號水杯共80個,這批水杯進貨的預算成本不超過2600元,且甲種型號水杯最多購進55個,在80個水杯全部售完的情況下設購進甲種號水杯a個,利潤為w元,寫出w與a的函數(shù)關系式,并求出第三月的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點A在x軸上,點B在直線x=3上,直線x=3與x軸交于點C
(1)求拋物線的解析式;
(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.
①當t為何值時,矩形PQNM的面積最?并求出最小面積;
②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經過A (0,3),B (4,3)兩點,與x軸交于點E,F,以AB為邊作矩形ABCD,其中CD邊經過拋物線的項點M,點P是拋物線上一動點(點P不與點A,B重合),過點P作y軸的平行線1與直線AB交于點G,與直線BD交于點H,連接AF交直線BD于點N.
(1)求該拋物線的解析式以及頂點M的坐標;
(2)當線段PH=2GH時,求點P的坐標;
(3)在拋物線上是否存在點P,使得以點P,E,N,F為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB上一點,將△ADE沿DE翻折,點A恰好落在BC上,記為A1,折痕為DE.再將∠B沿EA1向內翻折,點B恰好落在DE上,記為B1.若AD=1,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6.動點P從點A出發(fā),沿AB以每秒5個單位長度的速度向終點B運動.當點P不與點A重合時,過點P作PD⊥AC于點D、PE∥AC,過點D作DE∥AB,DE與PE交于點E.設點P的運動時間為t秒.
(1)線段AD的長為 .(用含t的代數(shù)式表示).
(2)當點E落在BC邊上時,求t的值.
(3)設△DPE與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關系式.
(4)若線段PE的中點為Q,當點Q落在△ABC一邊垂直平分線上時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙A與菱形ABCD的邊BC相切于點E,與邊AB相交于點F,連接EF.
(1)求證:CD是⊙A的切線;
(2)若⊙A的半徑為2,tan∠BEF=,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com