【題目】在一次課題學(xué)習(xí)活動(dòng)中,老師提出了如下問題:如圖,四邊形是正方形,點(diǎn)是邊的中點(diǎn),,且交正方形外角平分線于點(diǎn).請(qǐng)你探究與存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論正確.經(jīng)過探究,小明得出的結(jié)論是,而要證明結(jié)論,就需要證明和所在的兩個(gè)三角形全等,但和顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)是邊的中點(diǎn),小明想到的方法是如圖2,取的中點(diǎn),連接,證明.從而得到.請(qǐng)你參考小明的方法解決下列問題.
(1)如圖3,若把條件“點(diǎn)是邊的中點(diǎn)”改為“點(diǎn)是邊上的任意一點(diǎn)”,其余條件不變,證明結(jié)論仍然成立;
(2)如圖4,若把條件“點(diǎn)是邊的中點(diǎn)”改為:“點(diǎn)是邊延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論是否還成立?若成立,請(qǐng)完成證明過程,若不成立,請(qǐng)說明理由.
【答案】(1)正確,見解析;(2)正確,見解析
【解析】
(1)在AB上取點(diǎn),連接,證明△PAE≌△CEF即可;
(2)延長(zhǎng)BA至,使=CE,連接,證明△ANE≌△ECF即可.
解:(1)正確.
證明:在AB上取一點(diǎn)M,使AM=EC,連接ME.
四邊形是正方形,
∴BM=BE,
∴∠BME=45°,
∴∠AME=135°,
∵CF是外角平分線,
∴∠DCF=45°,
∴∠ECF=135°,
∴∠AME=∠ECF,
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF,
∴△AME≌△ECF(ASA),
∴AE=EF.
(2)正確.
證明:在BA的延長(zhǎng)線上取一點(diǎn)N.
使AN=CE,連接NE.
∴BN=BE,
∴∠N=∠NEC=45°,
∵CF平分∠DCG,
∴∠FCE=45°,
∴∠N=∠ECF,
∵四邊形ABCD是正方形,
∴AD∥BE,
∴∠DAE=∠BEA,
即∠DAE+90°=∠BEA+90°,
∴∠NAE=∠CEF,
∴△ANE≌△ECF(ASA)
∴AE=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.
(1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)
(2)在進(jìn)入第二輪傳染之前,有兩位患者被及時(shí)隔離并治愈,問第二輪傳染后總共是否會(huì)有21人患病的情況發(fā)生,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD與AC相交于點(diǎn)E,AB=9,BC=4,DC=3.
(1)求BE的長(zhǎng)度;
(2)求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求x取何值時(shí),花園面積S最大,并求出花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,A(0,4),點(diǎn)P從原點(diǎn)O開始向x軸正方向運(yùn)動(dòng),設(shè)P點(diǎn)橫坐標(biāo)為m,以點(diǎn)P為圓心,PO為半徑作⊙P交x 軸另一點(diǎn)為C,過點(diǎn)A作⊙P的切線交 x軸于點(diǎn)B,切點(diǎn)為Q.
(1)如圖1,當(dāng)B點(diǎn)坐標(biāo)為(3,0)時(shí),求m;
(2)如圖2,當(dāng)△PQB為等腰三角形時(shí),求m;
(3)如圖3,連接AP,作PE⊥AP交AB于點(diǎn)E,連接CE,求證:CE是⊙P的切線;
(4)若在x軸上存在點(diǎn)M(8,0),在點(diǎn)P整個(gè)運(yùn)動(dòng)過程中,求MQ的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組發(fā)現(xiàn)一個(gè)結(jié)論:已知直線a∥b,若直線c∥a,則c∥b.他們發(fā)現(xiàn)這個(gè)結(jié)論運(yùn)用很廣,請(qǐng)你利用這個(gè)結(jié)論解決以下問題:
已知直線AB∥CD,點(diǎn)E在AB、CD之間,點(diǎn)P、Q分別在直線AB、CD上,連接PE、EQ.
(1)如圖1,運(yùn)用上述結(jié)論,探究∠PEQ與∠APE+∠CQE之間的數(shù)量關(guān)系,并說明理由;
(2)如圖2,PF平分∠BPE,QF平分∠EQD,當(dāng)∠PEQ=140°時(shí),求出∠PFQ的度數(shù);
(3)如圖3,若點(diǎn)E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延長(zhǎng)線交PF于點(diǎn)F.當(dāng)∠PEQ=70°時(shí),請(qǐng)求出∠PFQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點(diǎn)D,DE⊥AB,垂足為E。若DE=1,則BC的長(zhǎng)為( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,對(duì)角線交于點(diǎn),,分別是,的中點(diǎn).下列結(jié)論正確的是( )
①;②;③平分;④平分;⑤四邊形是菱形.
A.③⑤B.①②④C.①②③④D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為⊙的直徑,點(diǎn)在⊙上,連接、,過點(diǎn)的切線與的延長(zhǎng)線交于點(diǎn), ,交于點(diǎn),交于點(diǎn).
()求證: .
()若⊙的半徑為, ,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com