【題目】如圖,在正方形網(wǎng)格中,每個(gè)小方格的邊長(zhǎng)都為1,△各頂點(diǎn)都在格點(diǎn)上.若點(diǎn)的坐標(biāo)為(0,3),請(qǐng)按要求解答下列問(wèn)題:

1)在圖中建立符合條件的平面直角坐標(biāo)系;

2)根據(jù)所建立的坐標(biāo)系,寫(xiě)出點(diǎn)和點(diǎn)的坐標(biāo);

3)畫(huà)出△關(guān)于軸的對(duì)稱(chēng)圖形△

【答案】1)見(jiàn)解析;(2)點(diǎn)B的坐標(biāo)為(-3-1),點(diǎn)C的坐標(biāo)為(11);(3)見(jiàn)解析.

【解析】

1)根據(jù)點(diǎn)A的坐標(biāo)(03)可建立坐標(biāo)系;

2)根據(jù)所建立的平面直角坐標(biāo)系可得兩個(gè)點(diǎn)的坐標(biāo);

3)分別作出點(diǎn)A,B,C關(guān)于x軸的對(duì)稱(chēng)點(diǎn),再首尾順次連接即可得.

1)如圖所示:

2)如圖所示,點(diǎn)B的坐標(biāo)為(-3,-1),點(diǎn)C的坐標(biāo)為(1,1);

3)如圖所示,ABC即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,DEACCECA,直線ECDA延長(zhǎng)線于F.

(1)CD6,求DE的長(zhǎng);

(2)求證:AEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC中,CDABD,且BD=4,AD=6,CD=8

1)求證:∠ACB=ABC;

2)如圖2EAC的中點(diǎn),連結(jié)DE.動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若MNBC平行,求t的值;

②問(wèn)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,分別是的中點(diǎn),連接,

(1)求證:

(2)試確定,當(dāng)菱形再滿足一個(gè)什么條件時(shí),四邊形為矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2分)矩形的一內(nèi)角平分線把矩形的一條邊分成35兩部分,則該矩形的周長(zhǎng)是()

A. 16 B. 2216 C. 26 D. 2226

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是矩形的對(duì)角線的交點(diǎn),、、分別是、、上的點(diǎn),且

求證:四邊形是矩形;

、、分別是、、的中點(diǎn),且,,求矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,點(diǎn)邊上一點(diǎn),且,,則的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱(chēng)A'B'C'ABC旋補(bǔ)三角形”,AB'C'B'C'上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補(bǔ)三角形”,ADABC旋補(bǔ)中線”.

①如圖2,當(dāng)ABC為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為   

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠ABC,射線BC上一點(diǎn)D.

(1)求作:等腰PBD,使線段BD為等腰PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等.

(2)(1)的條件下,若DPAB,求∠ABC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案