【題目】如圖, 是 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 交 于點(diǎn) , ,連結(jié) .
(1)如圖1,當(dāng)點(diǎn) 與 重合時(shí),求證:四邊形 是平行四邊形;
(2)如圖2,當(dāng)點(diǎn) 不與 重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,延長(zhǎng) 交 于點(diǎn) ,若 ,且 .當(dāng) , 時(shí),求 的長(zhǎng).
【答案】
(1)
證明:∵DE//AB,∴∠EDC=∠ABM,
∵CE//AM,
∴∠ECD=∠ADB,
又∵AM是△ABC的中線,且D與M重合,∴BD=DC,
∴△ABD△EDC,
∴AB=ED,又∵AB//ED,
∴四邊形ABDE為平行四邊形。
;∵CE//AM,
∴∠ECD=∠ADB,
又∵AM是△ABC的中線,且D與M重合,∴BD=DC,
∴△ABD△EDC,
∴AB=ED,又∵AB//ED,
∴四邊形ABDE為平行四邊形。
(2)
解:結(jié)論成立,理由如下:
過(guò)點(diǎn)M作MG//DE交EC于點(diǎn)G,
∵CE//AM,
∴四邊形DMGE為平行四邊形,
∴ED=GM且ED//GM,
由(1)可得AB=GM且AB//GM,
∴AB=ED且AB//ED.
∴四邊形ABDE為平行四邊形.
(3)
解:取線段HC的中點(diǎn)I,連結(jié)MI,
∴MI是△BHC的中位線,
∴MI//BH,MI=BH,
又∵BH⊥AC,且BH=AM,
∴MI=AM,MI⊥AC,
∴∠CAM=30°
設(shè)DH=x,則AH=x,AD=2x,
∴AM=4+2x,∴BH=4+2x,
由(2)已證四邊形ABDE為平行四邊形,
∴FD//AB,
∴△HDF~△HBA,
∴ , 即
解得x=1±(負(fù)根不合題意,舍去)
∴DH=1+.
;解:取線段HC的中點(diǎn)I,連結(jié)MI,
∴MI是△BHC的中位線,
∴MI//BH,MI=BH,
又∵BH⊥AC,且BH=AM,
∴MI=AM,MI⊥AC,
∴∠CAM=30°
設(shè)DH=x,則AH=x,AD=2x,
∴AM=4+2x,∴BH=4+2x,
由(2)已證四邊形ABDE為平行四邊形,
∴FD//AB,
∴△HDF~△HBA,
∴ , 即
解得x=1±(負(fù)根不合題意,舍去)
∴DH=1+.;
【解析】(1)由DE//AB,可得同位角相等:∠EDC=∠ABM,由CE//AM,可得同位角相等∠ECD=∠ADB,又由BD=DC,則△ABD△EDC,得到AB=ED,根據(jù)有一組對(duì)邊平行且相等,可得四邊形ABDE為平行四邊形.
(2)過(guò)點(diǎn)M作MG//DE交EC于點(diǎn)G,則可得四邊形DMGE為平行四邊形,且ED=GM且ED//GM,由(1)可得AB=GM且AB//GM,即可證得;
(3)在已知條件中沒(méi)有已知角的度數(shù)時(shí),則在求角度時(shí)往特殊角30°,60°,45°的方向考慮,則要求這樣的特殊角,就去找邊的關(guān)系,構(gòu)造直角三角形,取線段HC的中點(diǎn)I,連結(jié)MI,則MI是△BHC的中位線,可得MI//BH,MI=BH,且MI⊥AC,則去找Rt△AMI中邊的關(guān)系,求出∠CAM;
設(shè)DH=x,即可用x分別表示出AH=x,AD=2x,AM=4+2x,BH=4+2x,由△HDF~△HBA,得到對(duì)應(yīng)邊成比例,求出x的值即可;
【考點(diǎn)精析】掌握平行四邊形的判定與性質(zhì)是解答本題的根本,需要知道若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過(guò)點(diǎn)O作EF∥BC分別交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)斜邊長(zhǎng)相等的直角三角形紙片如圖①放置,其中∠ACB=∠CED=90°.∠A=45°,∠D=30°.
(1)∠CBA= ;
(2)把△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1,如圖②,連接D1B,則∠E1D1B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)不定的正方形ABCD,它的兩個(gè)相對(duì)的頂點(diǎn)A,C分別在邊長(zhǎng)為1的正六邊形一組對(duì)邊上,另外兩個(gè)頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長(zhǎng)a的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)共有500名學(xué)生,在“世界讀書日”前夕,開展了“閱讀助我成長(zhǎng)”的讀書活動(dòng).為了解該年級(jí)學(xué)生在此次活動(dòng)中課外閱讀情況,童威隨機(jī)抽取m名學(xué)生,調(diào)查他們課外閱讀書籍的數(shù)量,將收集的數(shù)據(jù)整理成如下統(tǒng)計(jì)表和扇形圖.
學(xué)生讀書數(shù)量統(tǒng)計(jì)表
閱讀量/本 | 學(xué)生人數(shù) |
1 | 15 |
2 | a |
3 | b |
4 | 5 |
(1)直接寫出m、a、b的值;
(2)估計(jì)該年級(jí)全體學(xué)生在這次活動(dòng)中課外閱讀書籍的總量大約是多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過(guò)點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示 的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對(duì)角線BD的長(zhǎng).
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線BD上一點(diǎn),且BP=2PD,過(guò)點(diǎn)P作直線分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形.求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)不定的正方形ABCD,它的兩個(gè)相對(duì)的頂點(diǎn)A,C分別在邊長(zhǎng)為1的正六邊形一組對(duì)邊上,另外兩個(gè)頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長(zhǎng)a的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,已知⊙O的半徑為1,菱形ABCD的三個(gè)頂點(diǎn)A、B、D在⊙O上,且CD與⊙O相切.
(1)求證:BC與⊙O相切;
(2)求陰影部分面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com