【題目】如圖,直線和相交于點(diǎn)C,分別交x軸于點(diǎn)A和點(diǎn)B點(diǎn)P為射線BC上的一點(diǎn)。
(1)如圖1,點(diǎn)D是直線CB上一動點(diǎn),連接OD,將沿OD翻折,點(diǎn)C的對應(yīng)點(diǎn)為,連接,并取的中點(diǎn)F,連接PF,當(dāng)四邊形AOCP的面積等于時(shí),求PF的最大值;
(2)如圖2,將直線AC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)α度,分別與x軸和直線BC相交于點(diǎn)S和點(diǎn)R,當(dāng)是等腰三角形時(shí),直接寫出α的度數(shù).
【答案】(1)PF的最大值是;(2)的度數(shù):,,,.
【解析】
(1)設(shè)P(m,-m+6),連接OP.根據(jù)S四邊形AOCP=S△AOP+S△OCP=,構(gòu)建方程求出點(diǎn)P坐標(biāo),取OB的中點(diǎn)Q,連接QF,QP,求出FQ,PQ,根據(jù)PF≤PQ+QF求解即可.
(2)分四種情形:①如圖2-1中,當(dāng)RS=RB時(shí),作OM⊥AC于M.②如圖2-2中,當(dāng)BS=BR時(shí),③如圖2-3中,當(dāng)SR=SB時(shí),④如圖2-4中,當(dāng)BR=BS時(shí),分別求解即可解決問題.
解:(1)在中,當(dāng)時(shí),;
當(dāng)時(shí),﹒
∴,
設(shè),連接OP
∴
∴
∴ ∴
取OB的中點(diǎn)Q,連接FQ,PQ
在中,當(dāng)時(shí),
∴ ∴
又∵點(diǎn)F是的中點(diǎn),
∴
∵
所以PF的最大值是
(2)①如圖2-1中,當(dāng)RS=RB時(shí),作OM⊥AC于M.
∵tan∠OAC==,
∴∠OAC=60°,
∵OC=OB=6,
∴∠OBC=∠OCB=45°,
∵∠OM′S=∠BRS=90°,
∴OM′∥BR,
∴∠AOM′=∠OBC=45°,
∵∠AOM=30°,
∴α=45°-30°=15°.
②如圖2-2中,當(dāng)BS=BR時(shí),易知∠BSR=22.5°,
∴∠SOM′=90°-22.5°=67.5°,
∴α=∠MOM′=180°-30°-67.5°=82.5°
③如圖2-3中,當(dāng)SR=SB時(shí),α=180°-30°=150°.
④如圖2-4中,當(dāng)BR=BS時(shí),α=150°+(90°-67.5°)=172.5°.
綜上所述,滿足條件的α的值為15°或82.5°或150°或172.5°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=6,∠BAC=108°,點(diǎn)D在邊BC上,∠BAD=36°.
(1)求證:△BAD∽△BCA;
(2)求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn)當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示欄桿寬度忽略不計(jì),其中米,那么適合該地下車庫的車輛限高標(biāo)志牌為
(參考數(shù)據(jù):
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若線段上的一個(gè)點(diǎn)把這條線段分成1:2的兩條線段,則稱這個(gè)點(diǎn)是這條線段的三等分點(diǎn).如圖1,點(diǎn)C在線段AB上,且AC:CB=1:2,則點(diǎn)C是線段AB的一個(gè)三等分點(diǎn),顯然,一條線段的三等分點(diǎn)有兩個(gè).
(1)已知:如圖2,DE=15cm,點(diǎn)P是DE的三等分點(diǎn),求DP的長.
(2)已知,線段AB=15cm,如圖3,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動;點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動,當(dāng)與點(diǎn)P重合后立馬改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動時(shí)間為t秒.
①若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值.
②若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班張山同學(xué)利用所學(xué)函數(shù)知識,對函數(shù)進(jìn)行了如下研究:
列表如下:
x | … | 0 | 1 | 2 | 3 | … | |||||
y | … | 7 | 5 | 3 | m | 1 | n | 1 | 1 | 1 | … |
描點(diǎn)并連線(如下圖)
(1)自變量x的取值范圍是________;
(2)表格中:________,________;
(3)在給出的坐標(biāo)系中畫出函數(shù)的圖象;
(4)一次函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于(﹣1)n=,所以我們通常把(﹣1)n稱為符號系數(shù).
(1)觀察下列單項(xiàng)式:﹣,…按此規(guī)律,第5個(gè)單項(xiàng)式是 ,第n個(gè)單項(xiàng)式是 .
(2)的值為 ;
(3)你根據(jù)(2)寫出一個(gè)當(dāng)n為偶數(shù)時(shí)值為2,當(dāng)n為奇數(shù)時(shí)值為0的式子 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M(﹣3,m)是一次函數(shù)y=x+1與反比例函數(shù)y=(k≠0)的圖象的一個(gè)交點(diǎn).
(1)求反比例函數(shù)表達(dá)式;
(2)點(diǎn)P是x軸正半軸上的一個(gè)動點(diǎn),設(shè)OP=a(a≠2),過點(diǎn)P作垂直于x軸的直線,分別交一次函數(shù),反比例函數(shù)的圖象于點(diǎn)A,B,過OP的中點(diǎn)Q作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)C,△ABC′與△ABC關(guān)于直線AB對稱.
①當(dāng)a=4時(shí),求△ABC′的面積;
②當(dāng)a的值為 時(shí),△AMC與△AMC′的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購買籃球、排球共20個(gè),購買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購買3個(gè)籃球的費(fèi)用與購買5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在全校學(xué)生中開展了“地球—我們的家園”為主題的環(huán)保征文比賽,評選出一、二、三等獎(jiǎng)和優(yōu)秀獎(jiǎng)。根據(jù)獎(jiǎng)項(xiàng)的情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)求校獲獎(jiǎng)的總?cè)藬?shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求在扇形統(tǒng)計(jì)圖中表示“二等獎(jiǎng)” 的扇形的圓心角的度數(shù);
(3)獲得一等獎(jiǎng)的4名學(xué)生中有3男1女,現(xiàn)打算從中隨機(jī)選出2名學(xué)生參加頒獎(jiǎng)活動,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率﹒
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com