【題目】如圖1是一個(gè)用鐵絲圍成的籃框,我們來仿制一個(gè)類似的柱體形籃框.如圖2,它是由一個(gè)半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個(gè)缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、GB1上,A2A3…、AnB2B3、…Bn分別在半徑OA2OB2上,C2、C3、…、CnD2、D3Dn分別在EC2ED2上,EFC2D2H2C1D1EFH1,FH1=H1H2=dC1D1、C2D2C3D3、CnDn依次等距離平行排放(最后一個(gè)矩形狀框的邊CnDn與點(diǎn)E間的距離應(yīng)不超過d),A1C1A2C2A3C3∥…∥AnCn

1)求d的值;

2)問CnDn與點(diǎn)E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?

【答案】1;(2)不能,

【解析】

試題分析:(1)根據(jù)d=FH2,求出EH2即可解決問題.

2)假設(shè)CnDn與點(diǎn)E間的距離能等于d,列出關(guān)于n的方程求解,發(fā)現(xiàn)n沒有整數(shù)解,由=4.8,求出n即可解決問題.

試題解析:(1)在RTD2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EFC2D2,∴EH1=r,FH1=rr,∴d==;

2)假設(shè)CnDn與點(diǎn)E間的距離能等于d,由題意,這個(gè)方程n沒有整數(shù)解,所以假設(shè)不成立.

=4.8,∴n=6,此時(shí)CnDn與點(diǎn)E間的距離==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,等邊△ABC的頂點(diǎn)A、B、C的坐標(biāo)分別為(a,4)、(b,0)、(c,6),且abc,則等邊△ABC的邊長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電器專營(yíng)店的經(jīng)營(yíng)利潤(rùn)受地理位置、顧客消費(fèi)能力等因素的影響,某品牌電腦專營(yíng)店設(shè)有甲、乙兩家分店,均銷售AB、C、D四種款式的電腦,每種款式電腦的利潤(rùn)如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機(jī)抽取所記錄的50臺(tái)電腦的款式,統(tǒng)計(jì)各種款式電腦的銷售數(shù)量,如表2所示.

1:四種款式電腦的利潤(rùn)

電腦款式

A

B

C

D

利潤(rùn)(元/臺(tái))

160

200

240

320

2:甲、乙兩店電腦銷售情況

電腦款式

A

B

C

D

甲店銷售數(shù)量(臺(tái))

20

15

10

5

乙店銷售數(shù)量(臺(tái))8

8

10

14

18

試運(yùn)用統(tǒng)計(jì)與概率知識(shí),解決下列問題:

1)從甲店每月售出的電腦中隨機(jī)抽取一臺(tái),其利潤(rùn)不少于240元的概率為   ;

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當(dāng).現(xiàn)由于資金限制,需對(duì)其中一家分店作出暫停營(yíng)業(yè)的決定,若從每臺(tái)電腦的平均利潤(rùn)的角度考慮,你認(rèn)為應(yīng)對(duì)哪家分店作出暫停營(yíng)業(yè)的決定?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)教師在某班隨機(jī)抽查了學(xué)生報(bào)考志愿的情況,繪制了如下扇形圖和統(tǒng)計(jì)表,學(xué)生統(tǒng)計(jì)表繪制好后不小心撕掉了一個(gè)角.

報(bào)考學(xué)校

一中

二中

八中

其他

報(bào)考人數(shù)

4

5

6

(1)求撕掉角上的數(shù)和抽查學(xué)生的總數(shù);

(2)老師打算從抽查的學(xué)生中隨機(jī)抽取1個(gè)人來談感想,求抽到報(bào)考一中學(xué)生的概率;

(3)把抽查學(xué)生的人數(shù)看做一組數(shù)據(jù),抽查學(xué)生報(bào)考志愿人數(shù)的眾數(shù)是   ,報(bào)考志愿的人數(shù)中位數(shù)是   

(4)報(bào)考一中的人數(shù)百分比在扇形統(tǒng)計(jì)圖中所占圓心角的正切值為   ,報(bào)考八中的百分比所占扇形統(tǒng)計(jì)圖的圓心角的度數(shù)是   .(注:tan36°≈0.7265;tan72°≈3.078;)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在AE上,點(diǎn)D在AC上,AB=AD.請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件,使ABC≌△ADE(只能添加一個(gè)).

(1)你添加的條件是   

(2)添加條件后,請(qǐng)說明ABC≌△ADE的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊ABAD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AGAH什么關(guān)系?請(qǐng)說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出Sm的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.

②請(qǐng)直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O, ,則BC邊的長(zhǎng)為_

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)三角形先沿著x軸翻折,再向右平移2個(gè)單位稱為1次變換.如圖,已知等邊三角形ABC的頂點(diǎn)BC的坐標(biāo)分別是(﹣1,﹣1)、(﹣3,﹣1),ABC經(jīng)過連續(xù)9次這樣的變換得到ABC′,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是______

查看答案和解析>>

同步練習(xí)冊(cè)答案