“圓材埋壁”是我國古代數(shù)學著作《九章算術》中的一個問題,“今有圓材,埋壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學語言表述是:“如圖所示,CD為⊙O的直徑,CD⊥AB,垂足為E,CE=1寸,AB=1尺,求直徑CD長是多少寸?”(注:1尺=10寸)

【答案】分析:由勾股定理OA2=OE2+AE2,代入數(shù)據(jù)即可求得.
解答:解:∵AB⊥CD
∴AE=BE
∵AB=10
∴AE=5
在Rt△AOE中,∵OA2=OE2+AE2
∴OA2=(OA-1)2+52
∴OA=13
∴CD=2A0=26
點評:考查了學生對勾股定理的熟練應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,“圓材埋壁”是我國古代著名數(shù)學著作《九章算術》中的問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何.”用幾何語言可表述為:CD為⊙O的直徑,弦AB⊥CD于E,CE=1寸,AB=10寸,則直徑CD的長為(  )
A、12.5寸B、13寸C、25寸D、26寸

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)“圓材埋壁”是我國古代著名數(shù)學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何”此問題的實質就是解決下面的問題:“如圖,CD為⊙O的直徑,弦AB⊥CD于點E,CE=1,AB=10,求CD的長”.根據(jù)題意可得CD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、“圓材埋壁”是我國古代數(shù)學著作《九章算術》中的一個問題,“今有圓材,埋壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學語言表述是:“如圖所示,CD為⊙O的直徑,CD⊥AB,垂足為E,CE=1寸,AB=1尺,求直徑CD長是多少寸?”(注:1尺=10寸)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

“圓材埋壁”是我國古代《九章算術》中的一個問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代的數(shù)學語言表示是:“如圖,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”.依題意,CD長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2002年北京市西城區(qū)中考數(shù)學試卷(解析版) 題型:選擇題

(2006•湖北)如圖,“圓材埋壁”是我國古代著名數(shù)學著作《九章算術》中的問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何.”用幾何語言可表述為:CD為⊙O的直徑,弦AB⊥CD于E,CE=1寸,AB=10寸,則直徑CD的長為( )

A.12.5寸
B.13寸
C.25寸
D.26寸

查看答案和解析>>

同步練習冊答案