【題目】如圖,動點(diǎn)O從邊長為6的等邊△ABC的頂點(diǎn)A出發(fā),沿著ACBA的路線勻速運(yùn)動一周,速度為1個單位長度每秒,以O為圓心、為半徑的圓在運(yùn)動過程中與△ABC的邊第二次相切時是點(diǎn)O出發(fā)后第______秒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某班數(shù)學(xué)興趣小組利用數(shù)學(xué)知識測量建筑物DEFC的高度.他們從點(diǎn)A出發(fā)沿著坡度為=1:2.4的斜坡AB步行26米到達(dá)點(diǎn)B處,此時測得建筑物頂端C的仰角=35°,建筑物底端D的俯角β=30°.若AD為水平的地面,則此建筑物的高度CD約為( 。┟祝▍⒖紨(shù)據(jù):≈1.7,sin35°≈0.6,cos35°≈0.8,tan35°≈0.75)
A. 20.2B. 22.75C. 23.6D. 30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,邊長為6,D是BC邊上的動點(diǎn),∠EDF=60°.
(1)求證:△BDE∽△CFD;
(2)當(dāng)BD=1,CF=3時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=(x<0)上,B,C兩點(diǎn)在x軸上,△ABC是以AC為斜邊的等腰直角三角形,過點(diǎn)B作BD⊥AC交y軸于點(diǎn)E,交AC于點(diǎn)D,若△BCE的面積為3,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)A,過點(diǎn)C作CB⊥y軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
B:①求線段DE的長;
②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直經(jīng)作⊙O交BC與D點(diǎn),過點(diǎn)D作⊙O的切線EF,交AB于點(diǎn)E,交AC的延長線于點(diǎn)F.
(1)求證:FE⊥AB.
(2)當(dāng)AE=6,AF=10時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)雞場有5000只雞準(zhǔn)備對外出售。從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:kg),繪制出如下的統(tǒng)計圖①和圖②。請根據(jù)相關(guān)信息,解答下列問題:
Ⅰ.圖①中的值為 ;
Ⅱ.求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
Ⅲ.根據(jù)樣本數(shù)據(jù),估計這5000只雞中,質(zhì)量為1.0kg的約為多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,,AC切于點(diǎn)A,點(diǎn)E為上一點(diǎn),且,連CE交BD于點(diǎn)D.
求證:CD為的切線;
連AD,BE交于點(diǎn)F,的半徑為2,當(dāng)點(diǎn)F為AD中點(diǎn)時,求BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線過點(diǎn),頂點(diǎn)為M點(diǎn).
(1)求該拋物線的解析式;
(2)試判斷拋物線上是否存在一點(diǎn)P,使∠POM=90.若不存在,說明理由;若存在,求出P點(diǎn)的坐標(biāo);
(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com