【題目】如圖,ABC的面積為1,分別取AC、BC兩邊的中點A1、B1,則四邊形A1ABB1的面積為,再分別取A1C、B1C的中點A2、B2,取A2C、B2C的中點A3、B3,依次取下去利用這一圖形,能直觀地計算出

A. 1B. C. D.

【答案】C

【解析】

對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點.

解:∵A1、B1分別是ACBC兩邊的中點,且△ABC的面積為1

∴△A1B1C

的面積為

∴四邊形A1ABB1的面積=ABC的面積-A1B1C的面積
;

∴四邊形A2A1B1B2的面積=的面積- 的面積

∴第n個四邊形的面積

故答案為:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B90°,AC60 cm,∠A60°,點D從點C出發(fā)沿CA方向以4 cm/秒的速度向點A勻速運(yùn)動,同時點E從點A出發(fā)沿AB方向以2 cm/秒的速度向點B勻速運(yùn)動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運(yùn)動.設(shè)點D,E運(yùn)動的時間是t(0<t≤15).過點DDF⊥BC于點F,連接DE,EF.

(1)求證:AEDF

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

(3)當(dāng)t為何值時,△DEF為直角三角形?請直接寫出結(jié)果;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調(diào)查中,喜歡籃球項目的同學(xué)有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補(bǔ)充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加;@球隊,請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)利用三角函數(shù)測高后,某綜合實踐活動小組實地測量了鳳凰山與中心廣場的相對高度AB,其測量步驟如下:

1)在中心廣場測點C處安置測傾器,測得此時山頂A的仰角∠AFH=30°;

2)在測點C與山腳B之間的D處安置測傾器(CDB在同一直線上,且CD之間的距離可以直接測得),測得此時山頂上紅軍亭頂部E的仰角∠EGH=45°;

3)測得測傾器的高度CF=DG=1.5米,并測得CD之間的距離為288米;

已知紅軍亭高度為12米,請根據(jù)測量數(shù)據(jù)求出鳳凰山與中心廣場的相對高度AB.(1.732,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉琪同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖所示的□ABCD,并寫出了如下尚不完整的已知和求證.

(1)補(bǔ)全已知和求證(在方框中填空);

(2)嘉琪同學(xué)想利用三角形全等,依據(jù)“兩組對邊分別平行的四邊形是平行四邊形”來證明.請你按她的想法完成證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018125日,濟(jì)南至成都方向的高鐵線路正式開通,高鐵平均時速為普快平均時速的4倍,從濟(jì)南到成都的高鐵運(yùn)行時間比普快列車減少了26小時,濟(jì)南市民早上可在濟(jì)南吃完甜沫油條,晚上在成都吃麻辣火鍋了.已知濟(jì)南到成都的火車行車?yán)锍碳s為2288千米,求高鐵列車的平均時速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有大小兩種貨車,輛大貨車與輛小火車一次可以運(yùn)貨噸,輛大貨車與輛小貨車一次可以運(yùn)貨噸.

(1)求輛大貨車和輛小貨車一次可以分別運(yùn)多少噸;

(2)現(xiàn)有噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共輛把全部貨物一次運(yùn)完.求至少需要安排幾輛大貨車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 某單位在二月份準(zhǔn)備組織部分員工到北京旅游,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報價均為2000/人,兩家旅行社同時都對10人以上的團(tuán)體推出了優(yōu)惠舉措:甲旅行社對每位員工七五折優(yōu)惠;而乙旅行社是免去一位帶隊管理員工的費用,其余員工八折優(yōu)惠.

(1)如果設(shè)參加旅游的員工共有a(a)人,則甲旅行社的費用為 元,乙旅行社的費用為 元;(用含a的代數(shù)式表示,并化簡.)

(2)假如這個單位現(xiàn)組織包括管理員工在內(nèi)的共20名員工到北京旅游,該單位選擇哪一家旅行社比較優(yōu)惠?請說明理由;

(3)如果計劃在二月份外出旅游七天,設(shè)最中間一天的日期為m

這七天的日期之和為 (用含m的代數(shù)式表示,并化簡.)

假如這七天的日期之和為63的倍數(shù),則他們可能于二月幾號出發(fā)?(寫出所有符合條件的可能性,并寫出簡單的計算過程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORtABC的外接圓,AB為直徑,∠ABC=30°,CD是⊙O的切線,EDABF,

(1)求證:CDE是等腰三角形;

(2)若AB=4,,求證:OBC≌△DCE.

查看答案和解析>>

同步練習(xí)冊答案