【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實數(shù),方程①的根為非負數(shù).
(1)求k的取值范圍;
(2)當(dāng)方程②有兩個整數(shù)根x1、x2 , k為整數(shù),且k=m+2,n=1時,求方程②的整數(shù)根;
(3)當(dāng)方程②有兩個實數(shù)根x1、x2 , 滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負整數(shù)時,試判斷|m|≤2是否成立?請說明理由.
【答案】
(1)
解:∵關(guān)于x的分式方程 的根為非負數(shù),
∴x≥0且x≠1,
又∵x= ≥0,且 ≠1,
∴解得k≥﹣1且k≠1,
又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,
∴k≠2,
綜上可得:k≥﹣1且k≠1且k≠2;
(2)
解:∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有兩個整數(shù)根x1、x2,且k=m+2,n=1時,
∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,
∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,
∴△=9m2﹣4m(m﹣1)=m(5m+4),
∵x1、x2是整數(shù),k、m都是整數(shù),
∵x1+x2=3,x1x2= =1﹣ ,
∴1﹣ 為整數(shù),
∴m=1或﹣1,
∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,
x2﹣3x=0,
x(x﹣3)=0,
x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,
x2﹣3x+2=0,
(x﹣1)(x﹣2)=0,
x1=1,x2=2;
(3)
解:|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2,
∵k是負整數(shù),
∴k=﹣1,
(2﹣k)x2+3mx+(3﹣k)n=0且方程有兩個實數(shù)根x1、x2,
∴x1+x2=﹣ = =﹣m,x1x2= = ,
x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),
x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,
x12+x22═x1x2+k2,
(x1+x2)2﹣2x1x2﹣x1x2=k2,
(x1+x2)2﹣3x1x2=k2,
(﹣m)2﹣3× =(﹣1)2,
m2﹣4=1,
m2=5,
m=± ,
∴|m|≤2不成立.
【解析】(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負數(shù)得出k的取值;(2)先把k=m+2,n=1代入方程②化簡,由方程②有兩個整數(shù)實根得△是完全平方數(shù),列等式得出關(guān)于m的等式,由根與系數(shù)的關(guān)系和兩個整數(shù)根x1、x2得出m=1和﹣1,分別代入方程后解出即可.(3)根據(jù)(1)中k的取值和k為負整數(shù)得出k=﹣1,化簡已知所給的等式,并將兩根和與積代入計算求出m的值,做出判斷.本題考查了一元二次方程的根與系數(shù)的關(guān)系,考查了根的判別式及分式方程的解;注意:①解分式方程時分母不能為0;②一元二次方程有兩個整數(shù)根時,根的判別式△為完全平方數(shù).
【考點精析】根據(jù)題目的已知條件,利用求根公式和根與系數(shù)的關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s。
⑴連接AQ、CP交于點M,在點P、Q運動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數(shù);
⑵點P、Q在運動過程中,設(shè)運動時間為t,當(dāng)t為何值時,△PBQ為直角三角形?
⑶如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標系xoy中,直線l:y=kx+b交x軸,y軸于點E,F(xiàn),點B的坐標是(2,2),過點B分別作x軸、y軸的垂線,垂足為A、C,點D是線段CO上的動點,以BD為對稱軸,作與△BCD或軸對稱的△BC′D.
(1)當(dāng)∠CBD=15°時,求點C′的坐標.
(2)當(dāng)圖1中的直線l經(jīng)過點A,且k=﹣ 時(如圖2),求點D由C到O的運動過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當(dāng)圖1中的直線l經(jīng)過點D,C′時(如圖3),以DE為對稱軸,作于△DOE或軸對稱的△DO′E,連結(jié)O′C,O′O,問是否存在點D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AB的垂直平分線EF分別交AC、AB邊于E、F點.若點O為BC邊的中點,點M為線段EF上一動點,則△BOM周長的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的坐標系中,△ABC的三個頂點的坐標依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2)
(1)請寫出△ABC關(guān)于x軸對稱的點A1、B1、C1的坐標;
(2)請在這個坐標系中作出△ABC關(guān)于y軸對稱的△A2B2C2;
(3)計算:△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A. 在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形
B. 在△ABC中,若a2=(b+c) (b-c),則△ABC是直角三角形
C. 在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形
D. 在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE、AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結(jié)PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°. 恒成立的結(jié)論有( )
A. ①③④⑤ B. ①②④⑤
C. ①②③⑤ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com