【題目】已知,在矩形ABCD中,AB=a,BC=b,動點M從點A出發(fā)沿邊AD向點D運動.
(1)如圖1,當b=2a,點M運動到邊AD的中點時,請證明∠BMC=90°;
(2)如圖2,當b>2a時,點M在運動的過程中,是否存在∠BMC=90°,若存在,請給與證明;若不存在,請說明理由;
(3)如圖3,當b<2a時,(2)中的結論是否仍然成立?請說明理由.
【答案】(1)證明:∵b=2a,點M是AD的中點,∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,∴∠AMB=∠DMC=45°。
∴∠BMC=90°。
(2)解:存在,理由如下:
若∠BMC=90°,則∠AMB=∠DMC=90°。
又∵∠AMB+∠ABM=90°,∴∠ABM=∠DMC。
又∵∠A=∠D=90°,∴△ABM∽△DMC。∴。
設AM=x,則,整理得:x2﹣bx+a2=0。
∵b>2a,a>0,b>0,∴△=b2﹣4a2>0。
∴方程有兩個不相等的實數(shù)根。
又∵兩根之積等于a2>0,∴兩根同號。
又∵兩根之和等于b >0,∴兩根為正。符合題意。
∴當b>2a時,存在∠BMC=90°。
(3)解:不成立.理由如下:
若∠BMC=90°,由(2)可知x2﹣bx+a2=0,
∵b<2a,a>0,b>0,∴△=b2﹣4a2<0,∴方程沒有實數(shù)根。
∴當b<2a時,不存在∠BMC=90°,即(2)中的結論不成立。
【解析】試題分析:(1)由b=2a,點M是AD的中點,可得AB=AM=MD=DC=a,又由四邊形ABCD是矩形,即可求得∠AMB=∠DMC=45°,則可求得∠BMC=90°;
(2)由∠BMC=90°,易證得△ABM∽△DMC,設AM=x,根據相似三角形的對應邊成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可確定方程有兩個不相等的實數(shù)根,且兩根均大于零,符合題意;
(3)由(2),當b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情況,即可求得答案.
試題解析:(1)∵b=2a,點M是AD的中點,
∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,
∴∠AMB=∠DMC=45°,
∴∠BMC=90°.
(2)存在,
理由:若∠BMC=90°,
則∠AMB+∠DMC=90°,
又∵∠AMB+∠ABM=90°,
∴∠ABM=∠DMC,
又∵∠A=∠D=90°,
∴△ABM∽△DMC,
∴,
設AM=x,則,
整理得:x2﹣bx+a2=0,
∵b>2a,a>0,b>0,
∴△=b2﹣4a2>0,
∴方程有兩個不相等的實數(shù)根,且兩根均大于零,符合題意,
∴當b>2a時,存在∠BMC=90°,
(3)不成立.
理由:若∠BMC=90°,
由(2)可知x2﹣bx+a2=0,
∵b<2a,a>0,b>0,
∴△=b2﹣4a2<0,
∴方程沒有實數(shù)根,
∴當b<2a時,不存在∠BMC=90°,即(2)中的結論不成立.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不一定成立的是( )
A. 若a>b,則a+c>b+cB. 若a+c>b+c,則a>b
C. 若a>b,則ac2>bc2D. 若a>b,則1+a>b﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市近郊有一塊長為60米,寬為50米的矩形荒地,地方政府準備在此建一個綜合性休閑廣場,其中陰影部分為通道,通道的寬度均相等,中間的三個矩形(其中三個矩形的一邊長均為a米)區(qū)域將鋪設塑膠地面作為運動場地.設通道的寬度為x米.
(1)a= (用含x的代數(shù)式表示);
(2)若塑膠運動場地總占地面積為 2430平方米,則通道的寬度為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某電腦公司經銷甲種型號電腦,受經濟危機影響,電腦價格不斷下降.今年三月份的電腦售價比去年同期每臺降價1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.
(1)今年三月份甲種電腦每臺售價多少元?
(2)為了增加收入,電腦公司決定再經銷乙種型號電腦,已知甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,公司預計用不多于5萬元且不少于4.8萬元的資金購進這兩種電腦共15臺,有幾種進貨方案?
(3)如果乙種電腦每臺售價為3800元,為打開乙種電腦的銷路,公司決定每售出一臺乙種電腦,返還顧客現(xiàn)金元,要使(2)中所有方案獲利相同,值應是多少?此時,哪種方案對公司更有利?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】揚州市為打造“綠色城市”降低空氣中pm2.5的濃度,積極投入資金進行園林綠化工程,已知2014年投資1000萬元,預計2016年投資1210萬元.若這兩年內平均每年投資增長的百分率相同.
(1)求平均每年投資增長的百分率;
(2)經過評估,空氣中pm2.5的濃度連續(xù)兩年較上年下降10%,則兩年后pm2.5的濃度比最初下降了百分之幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中不能判斷兩個直角三角形全等的是( )
A. 一個銳角和一條斜邊對應相等B. 一個銳角和一條直角邊相等
C. 一條直角邊和斜邊對應相等D. 兩條直角邊對應相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長城總長約為6700000米,用科學記數(shù)法表示為( )
A.67×105米
B.6.7×106米
C.6.7×107米
D.6.7×108米
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com