【題目】在如圖所示的三個(gè)函數(shù)圖象中,有兩個(gè)函數(shù)圖象能近似地刻畫如下a,b兩個(gè)數(shù)學(xué)問題:
問題a:矩形面積為4,它的長y與寬x之間的函數(shù)關(guān)系;
問題b:矩形周長為8,它的長y與寬x之間的函數(shù)關(guān)系.
(1)問題a,b所對應(yīng)的函數(shù)圖象分別為 ,(填寫序號(hào));
(2)請你把剩下的函數(shù)圖象寫出一個(gè)適合的數(shù)學(xué)問題.
【答案】(1)②,①;(2)見解析
【解析】
(1)直接利用實(shí)際問題列出函數(shù)關(guān)系進(jìn)而得出答案;
(2)直接利用函數(shù)圖象描述一個(gè)二次函數(shù)的關(guān)系即可.
(1)問題a:矩形面積為4,它的長y與寬x之間的函數(shù)關(guān)系為:y=(x>0);
問題b:矩形周長為8,它的長y與寬x之間的函數(shù)關(guān)系為:y=4﹣x(0<x<4).
問題a,b所對應(yīng)的函數(shù)圖象分別為:②,①;
故答案為:②,①;
(2)答案不唯一,
如:①正方形的面積y與邊長x之間的函數(shù)關(guān)系;
②圓的面積y與半徑x之間的函數(shù)關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,,點(diǎn),分別是邊,上的點(diǎn),且.
(1)若,,設(shè),,求關(guān)于的函數(shù)關(guān)系式;
(2)如圖②,,于點(diǎn),于點(diǎn),于點(diǎn),點(diǎn)在線段上,,,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市“青山綠水”行動(dòng)中,某社區(qū)計(jì)劃對面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個(gè)工程隊(duì)來完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.
(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;
(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬元,乙隊(duì)每天綠化費(fèi)用為0.5萬元,社區(qū)要使這次綠化的總費(fèi)用不超過40萬元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為4,點(diǎn),分別在邊,上,且,直線與直線交于點(diǎn),直線交直線于點(diǎn),連接,.
(1)如圖1,當(dāng)時(shí),求證:平分;
(2)如圖2,將圖1中的繞點(diǎn)逆時(shí)針旋轉(zhuǎn),其他條件不變,(1)的結(jié)論是否成立?說明理由;
(3)當(dāng)是等腰三角形時(shí),直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量建筑物CD、EF的高度,在直線CE上選取觀測點(diǎn)A、B,AC的距離為40米.從A、B測得建筑物的頂部D的仰角分別為51.34°、68.20°,從B、D測得建筑物的頂部F的仰角分別為64.43°、26.57°.
(1)求建筑物CD的高度;
(2)求建筑物EF的高度.
(參考數(shù)據(jù):tan51.34°≈1.25,tan68.20°≈2.5,tan64.43°≈2,tan26.57°≈0.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)絡(luò)銷售是一種重要的銷售方式.某鄉(xiāng)鎮(zhèn)農(nóng)貿(mào)公司新開設(shè)了一家網(wǎng)店,銷售當(dāng)?shù)剞r(nóng)產(chǎn)品.其中一種當(dāng)?shù)靥禺a(chǎn)在網(wǎng)上試銷售,其成本為每千克10元.公司在試銷售期間,調(diào)查發(fā)現(xiàn),每天銷售量y(kg)與銷售單價(jià)x(元)滿足如圖所示的函數(shù)關(guān)系(其中).
(1)直接寫出y與x之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)若農(nóng)貿(mào)公司每天銷售該特產(chǎn)的利潤要達(dá)到3100元,則銷售單價(jià)x應(yīng)定為多少元?
(3)設(shè)每天銷售該特產(chǎn)的利潤為W元,若,求:銷售單價(jià)x為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于點(diǎn),,經(jīng)過,兩點(diǎn)的拋物線與軸的負(fù)半軸的另一交點(diǎn)為,且
(1)求該拋物線的解析式及拋物線頂點(diǎn)的坐標(biāo);
(2)點(diǎn)是射線上一點(diǎn),問是否存在以點(diǎn),,為頂點(diǎn)的三角形,與相似,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點(diǎn),BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com