【題目】在數(shù)軸上點A表示數(shù)a,點B表示數(shù)b,點C表示數(shù)c,b是最小的正整數(shù),且a,c滿足|a+2|+(c-7)2=0.

(1)填空:a=________,b=________,c=________

(2)畫出數(shù)軸,并把A,B,C三點表示在數(shù)軸上;

(3)P是數(shù)軸上任意一點,點P表示的數(shù)是x,當PA+PB+PC=10時,x的值為多少?

【答案】 -2 1 7

【解析】

(1)根據(jù)非負數(shù)的性質列方程求出a、c的值,根據(jù)有理數(shù)的概念求出b的值,從而得解;

(2)根據(jù)數(shù)軸的定義畫圖并表示即可;

(3)根據(jù)數(shù)軸上兩點間的距離公式得出一個絕對值方程,然后分x≤2、-2<x≤1、1<x≤7x>7四種情況去掉絕對值即可求出x的值

解:(1)由題意可知a+2=0,c-7=0,

解得a=-2,c=7.

因為b是最小的正整數(shù),所以b=1.

故答案為-2,1,7.

(2)畫出數(shù)軸如圖所示:

(3)因為PAPBPC=10,所以|x+2|+|x-1|+|x-7|=10.

x≤-2時,-x-2+1-x+7-x=10,

解得x=- (舍去).

當-2<x≤1時,x+2+1-x+7-x=10,

解得x=0.

1<x≤7時,x+2+x-1+7-x=10,

解得x=2.

x>7時,x+2+x-1+x-7=10,

解得x (舍去).

綜上所述,當PAPBPC=10時,x的值是02.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填入相應的括號內:11,-,6.5,-8,3,0,1,-1,-3.14.

(1)正數(shù)集合:{          …};(2)負數(shù)集合:{       …};

(3)整數(shù)集合:{          …};(4)正整數(shù)集合:{      …};

(5)負整數(shù)集合:{         …};(6)分數(shù)集合:{      …};

(7)正分數(shù)集合:{         …};(8)負分數(shù)集合:{      …};

(9)有理數(shù)集合:{         …}.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關系是(  )

A.相切
B.相交
C.相離
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是以數(shù)軸原點O為圓心,半徑為1的圓,∠AOB=45°,點P在數(shù)軸上運動,過點P且與OB平行的直線與⊙O有公共點,求OP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)-24×

(2)-9+5×(-6)-(-4)2÷(-8);

(3)0.25×(-2)2-[4÷+1]+(-1)2018;

(4)-42÷-[].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y= y= - x+4的圖像交點為AB,原點為O,求AOB面積.

【答案】8

【解析】整體分析:

聯(lián)立方程y= y= - x+4,求出點AB的坐標,然后由公式△OAB的面積=×x1- x2)(y2- y1求解.

y=代入y= - x+4得,

= - x+4,

解得x1=2+,x2=2-.

所以y1=2-,y2=2+.

A2-2+),B2+,2-),

所以OAB的面積=×x1- x2)(y2- y1==×4×4=.

型】解答
束】
19

【題目】如圖,直線與雙曲線相交于A21)、B兩點.

1)求mk的值;

2)不解關于x、y的方程組直接寫出點B的坐標;

3)直線經(jīng)過點B嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖17Z10是由邊長為1的小正方形組成的網(wǎng)格

(1)求四邊形ABCD的面積;

(2)你能判斷ADCD的位置關系嗎?說出你的理由

17Z10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.

(1)請寫出圖中∠1的一對同位角,一對內錯角,一對同旁內角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( ).

A. m=-2是方程m-2=0的解 B. m=6是方程3m+18=0的解

C. x=-1是方程-=0的解 D. x=是方程10x=1的解

查看答案和解析>>

同步練習冊答案