【題目】快車和慢車分別從市和市兩地同時(shí)出發(fā),勻速行駛,先相向而行,慢車到達(dá)市后停止行駛,快車到達(dá)市后,立即按原路原速度返回市(調(diào)頭時(shí)間忽略不計(jì)),結(jié)果與慢車同時(shí)到達(dá)市.快、慢兩車距市的路程、(單位:)與出發(fā)時(shí)間(單位:)之間的函數(shù)圖像如圖所示.
(1)市和市之間的路程是________,圖中____________;
(2)請求出與之間的函數(shù)關(guān)系式;
(3)快車與慢車迎面相遇以后,請直接寫出經(jīng)過多長時(shí)間兩車相距?
【答案】(1)360,120(2)(3)快車與慢車迎面相遇以后,再經(jīng)過或h兩車相距20 km.
【解析】
(1)由圖象中的數(shù)據(jù),可以直接寫出A市和B市之間的路程;根據(jù)題意,可知快車速度是慢車速度的2倍,然后設(shè)出慢車的速度,即可得到相應(yīng)的方程,從而可以求得慢車和快車的速度,進(jìn)而計(jì)算出a的值;
(2)如圖,先求解當(dāng)時(shí),與的關(guān)系式,求得與軸的交點(diǎn)坐標(biāo),結(jié)合題意再求當(dāng)3<x≤6時(shí)的關(guān)系式,即可得到答案;
(3)根據(jù)題意可知,分兩種情況進(jìn)行討論,一種是快車到達(dá)B地前相距20km,一種是快車從B地向A地行駛的過程中相距20km,然后分別進(jìn)行計(jì)算即可解答本題.
解:(1)由圖可知, A市和B市之間的路程是360km,
根據(jù)題意可知快車速度是慢車速度的2倍,
設(shè)慢車速度為x km/h,則快車速度為2x km/h,
解得,x=60,
則
故答案為:360,
(2) 快車速度為120 km/h,到達(dá)B市的時(shí)間為360÷120=3(h),
當(dāng)時(shí),設(shè)
把代入解析式得:
解得:
如圖,函數(shù)與軸的交點(diǎn),
又根據(jù)題意得:兩函數(shù)的交點(diǎn)
當(dāng)3<x≤6時(shí),設(shè)
解得:
綜上:
(3)過原點(diǎn),
設(shè)
把代入得:
當(dāng)0≤x≤3時(shí),
即
解得,
當(dāng)3<x≤6時(shí),
即
解得,
,
所以,快車與慢車迎面相遇以后,再經(jīng)過或h兩車相距20 km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(t,0),B(t+2,0),C(n,1),若射線OC上存在點(diǎn)P,使得△ABP是以AB為腰的等腰三角形,就稱點(diǎn)P為線段AB關(guān)于射線OC的等腰點(diǎn).
(1)如圖,t=0,
①若n=0,則線段AB關(guān)于射線OC的等腰點(diǎn)的坐標(biāo)是 ;
②若n<0,且線段AB關(guān)于射線OC的等腰點(diǎn)的縱坐標(biāo)小于1,求n的取值范圍;
(2)若n=,且射線OC上只存在一個(gè)線段AB關(guān)于射線OC的等腰點(diǎn),則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD中,點(diǎn)K在AD上,連接BK,過點(diǎn)A,C作BK的垂線,垂足分別為M,N,點(diǎn)O是正方形ABCD的中心,連接OM,ON.
(1)求證:AM=BN;
(2)請判斷△OMN的形狀,并說明理由;
(3)若點(diǎn)K在線段AD上運(yùn)動(dòng)(不包括端點(diǎn)),設(shè)AK=x,△OMN的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(寫出x的范圍);若點(diǎn)K在射線AD上運(yùn)動(dòng),且△OMN的面積為,請直接寫出AK長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“陽光體育一小時(shí)”活動(dòng),按學(xué)校實(shí)際情況,決定開設(shè)A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩個(gè)統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:
(1)本次共調(diào)查了________名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,“B”所在扇形的圓心角是________度;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該中學(xué)有1200名學(xué)生,喜歡籃球運(yùn)動(dòng)的學(xué)生約有________名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是長沙九龍倉國際金融中心,位于長沙市黃興路與解放路交會處的東北角,投資160億元人民幣,總建筑面積達(dá)98萬平方米,中心主樓BC高452m,是目前湖南省第一高樓,大樓頂部有一發(fā)射塔AB,已知和BC處于同一水平面上有一高樓DE,在樓DE底端D點(diǎn)測得A的仰角為α,tanα=,在頂端E點(diǎn)測得A的仰角為45°,AE=140m
(1)求兩樓之間的距離CD;
(2)求發(fā)射塔AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖和都是邊長為的等邊三角形,它們的邊在同一條直線上,點(diǎn),重合,現(xiàn)將沿著直線向右移動(dòng),直至點(diǎn)與重合時(shí)停止移動(dòng).在此過程中,設(shè)點(diǎn)移動(dòng)的距離為,兩個(gè)三角形重疊部分的面積為,則隨變化的函數(shù)圖像大致為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的綜合素養(yǎng),某校開設(shè)了五門手工活動(dòng)課.按照類別分為:“剪紙”、“沙畫”、“葫蘆雕刻”、“泥塑”、“插花”.為了了解學(xué)生對每種活動(dòng)課的喜愛情況,隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,回答下列問題:
(1)本次調(diào)查的樣本容量為________;統(tǒng)計(jì)圖中的________,________;
(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有2500名學(xué)生,請你估計(jì)全校喜愛“葫蘆雕刻”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線與軸的正半軸交于點(diǎn)A,與軸的負(fù)半軸交于點(diǎn)B, ,過點(diǎn)A作軸的垂線與過點(diǎn)O的直線相交于點(diǎn)C,直線OC的解析式為,過點(diǎn)C作軸,垂足為.
(1)如圖1,求直線的解析式;
(2)如圖2,點(diǎn)N在線段上,連接ON,點(diǎn)P在線段ON上,過P點(diǎn)作軸,垂足為D,交OC于點(diǎn)E,若,求的值;
(3)如圖3,在(2)的條件下,點(diǎn)F為線段AB上一點(diǎn),連接OF,過點(diǎn)F作OF的垂線交線段AC于點(diǎn)Q,連接BQ,過點(diǎn)F作軸的平行線交BQ于點(diǎn)G,連接PF交軸于點(diǎn)H,連接EH,若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高速公路管理部門工作人員在對某段高速公路進(jìn)行安全巡檢過程中,發(fā)現(xiàn)該高速公路旁的一斜坡存在落石隱患.該斜坡橫斷面示意圖如圖所示,水平線,點(diǎn)A、B分別在、上,斜坡AB的長為18米,過點(diǎn)B作于點(diǎn)C,且線段AC的長為米.
(1)求該斜坡的坡高BC;(結(jié)果用最簡根式表示)
(2)為降低落石風(fēng)險(xiǎn),該管理部門計(jì)劃對該斜坡進(jìn)行改造,改造后的斜坡坡腳為60°,過點(diǎn)M作于點(diǎn)N,求改造后的斜坡長度比改造前的斜坡長度增加了多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com