【題目】如圖,已知拋物線y=+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0),
(1)求m的值及拋物線的頂點坐標.
(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.
【答案】(1)m=2,(1,4);(2)(1,2).
【解析】試題分析:(1)首先把點B的坐標為(3,0)代入拋物線y=+mx+3,利用待定系數(shù)法即可求得m的值,繼而求得拋物線的頂點坐標;
(2)首先連接BC交拋物線對稱軸l于點P,則此時PA+PC的值最小,然后利用待定系數(shù)法求得直線BC的解析式,繼而求得答案.
試題解析:(1)把點B的坐標為(3,0)代入拋物線y=+mx+3得:0=+3m+3,
解得:m=2,
∴y=+2x+3=,
∴頂點坐標為:(1,4).
(2)連接BC交拋物線對稱軸l于點P,則此時PA+PC的值最小,
設直線BC的解析式為:y=kx+b,
∵點C(0,3),點B(3,0),
∴,解得: ,
∴直線BC的解析式為:y=﹣x+3,
當x=1時,y=﹣1+3=2,
∴當PA+PC的值最小時,點P的坐標為:(1,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直弦CD于點E,點F在AB的延長線上,且∠BCF=∠A.
(1)求證:直線CF是⊙O的切線;
(2)若⊙O的半徑為5,DB=4.求sin∠D的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖③所示,圖象過點(﹣1,0),對稱軸為直線x=2,則下 列結論中正確的個數(shù)有( )
①4a+b=0;
②9a+3b+c<0;
③若點A(﹣3,y1),點B(﹣,y2),點C(5,y3)在該函數(shù)圖象上,則y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<6),連接DE,當△BDE是直角三角形時,t的值為( )
A.2B.2.5或3.5
C.3.5或4.5D.2或3.5或4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應的任務.
課題學習:如何解一元二次不等式?
例題:解一元二次不等式.
解:
.
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有:
解不等式組得:
解不等式組得:
的解集為或.
即:一元二次不等式的解集為或.
任務:(1)上面解一元二次不等式的過程中體現(xiàn)出了數(shù)學的一些基本思想方法,請在下列選項中選出你認為正確的一項:_____ ;(填選項即可)
A.分類討論思想;B.數(shù)形結合思想;C.公理化思想;D.函數(shù)思想
(2)求一元二次不等式的解集為:_____ ;(直接填寫結果,不寫解答過程)
(3)仿照例題中的數(shù)學思想方法,求分式不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
圖形變換的基本方式有:平移變換、旋轉變換、軸對稱變換.在數(shù)學綜合與實踐課上,張老師將兩塊含角的全等三角尺按圖1方式擺放在一起 ,其中.同時,要求班內各小組對圖形進--步操作變換并提出問題,請你幫各小組進行解答.
[獨立思考]
(1)張老師首先提出問題:圖1中,四邊形是平行四邊形嗎?說明理由;
[提出問題]
(2)如圖2,“勵志”小組將沿射線方向平移到的位置,分別連接,進一步提出問題:四邊形是平行四邊形嗎?說明理由;
[拓展延伸]
(3)“慎密”小組提出的問題是:如圖3,兩個全等的三角尺重疊放在的位置,將其中一個三角尺繞著點按逆時針方向旋轉至的位置,使點恰好落在邊上,與相交于點,若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小米手機越來越受到大眾的喜愛,各種款式相繼投放市場,某店經營的A款手機去年銷售總額為50000元,今年每部銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少.
A,B兩款手機的進貨和銷售價格如下表:
A款手機 | B款手機 | |
進貨價格元 | 1100 | 1400 |
銷售價格元 | 今年的銷售價格 | 2000 |
(1)今年A款手機每部售價多少元?
(2)該店計劃新進一批A款手機和B款手機共60部,且B款手機的進貨數(shù)量不超過A款手機數(shù)量的兩倍,應如何進貨才能使這批手機獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班數(shù)學興趣小組利用數(shù)學活動課時間測量位于烈山山頂?shù)难椎鄣裣窀叨龋阎疑狡旅媾c水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進1620尺到達E點,在點E處測得雕像頂端A的仰角為60°,求雕像AB的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com