【題目】下列各比值中,是直角三角形的三邊之比的是(

A.B.C.D.3:4:5

【答案】D

【解析】

利用勾股定理的逆定理:如果三角形兩條邊的平方和等于第三邊的平方,那么這個三角形就是直角三角形.最長邊所對的角為直角.由此判定即可.

解:A、設三邊分別是x,2x,3x,∵x+2x=3x,∴三條線段不能組成三角形,不能組成直角三角形,故A選項錯誤;

B、設三邊分別是2x3x,4x,∵(2x)2+(3x)2≠(4x)2,∴三條線段不能組成直角三角形,故B選項錯誤;

C、設三邊分別是3x,4x,6x,∵(3x)2+(4x)2≠(6x)2,∴三條線段不能組成直角三角形,故C選項錯誤;

D、設三邊分別是3x4x,5x,∵(3x)2+(4x)2=(5x)2,∴三條線段能組成直角三角形,故D選項正確;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】列出下列問題中的函數(shù)關系式,并判斷它們是否為反比例函數(shù).

(1)某農(nóng)場的糧食總產(chǎn)量為1 500t,則該農(nóng)場人數(shù)y(人)與平均每人占有糧食量x(t)的函數(shù)關系式;

(2)在加油站,加油機顯示器上顯示的某一種油的單價為每升4.75元,總價從0元開始隨著加油量的變化而變化,則總價y(元)與加油量x(L)的函數(shù)關系式;

(3)小明完成100m賽跑時,時間t(s)與他跑步的平均速度v(m/s)之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過DDE⊥ACE,DF⊥ABBA的延長線于F,則下列結論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結論有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB和△ECD中,∠ACB=ECD=a,且AC=BC,EC=DC,AE、BD交于P點,連CP

1)求證:ACE≌△BCD

2)求∠APC的度數(shù)(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖, 請根據(jù)圖中提供的信息,完成下列問題:

1)此次共調查了 人;

2)求文學社團在扇形統(tǒng)計圖中所占圓心角為 度;

3)請將條形統(tǒng)計圖補充完整;

4)若該校有 1500 名學生,請估計喜歡體育類社團的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0c0)交x軸于點A,B,交y軸于點C,設過點AB,C三點的圓與y軸的另一個交點為D

1)如圖1,已知點A,B,C的坐標分別為(﹣20),(8,0),(0,﹣4);

求此拋物線的表達式與點D的坐標;

若點M為拋物線上的一動點,且位于第四象限,求△BDM面積的最大值;

2)如圖2,若a=1,求證:無論b,c取何值,點D均為定點,求出該定點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中的網(wǎng)格由單位正方形構成,中,點坐標為,點坐標為,點坐標為

1的長為_______;

2)求證:;

3)若以、、及點為頂點的四邊形為平行四邊形,寫出點在第一象限時的坐標______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=+mx+3x軸交于A,B兩點,與y軸交于點C,點B的坐標為(30),

1)求m的值及拋物線的頂點坐標.

2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD m

查看答案和解析>>

同步練習冊答案