【題目】綜合與實(shí)踐

圖形變換的基本方式有:平移變換、旋轉(zhuǎn)變換、軸對稱變換.在數(shù)學(xué)綜合與實(shí)踐課上,張老師將兩塊含角的全等三角尺按圖1方式擺放在一起 ,其中.同時(shí),要求班內(nèi)各小組對圖形進(jìn)--步操作變換并提出問題,請你幫各小組進(jìn)行解答.

[獨(dú)立思考]

1)張老師首先提出問題:1中,四邊形是平行四邊形嗎?說明理由;

[提出問題]

2)如圖2,勵(lì)志小組將沿射線方向平移到的位置,分別連接,進(jìn)一步提出問題:四邊形是平行四邊形嗎?說明理由;

[拓展延伸]

3)“慎密”小組提出的問題是:如圖3,兩個(gè)全等的三角尺重疊放在的位置,將其中一個(gè)三角尺繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至的位置,使點(diǎn)恰好落在邊上,相交于點(diǎn),若,求的長.

【答案】1)四邊形是平行四邊形,理由見解析;(2)四邊形是平行四邊形,理由見解析;(3

【解析】

1)根據(jù)兩組對邊分別相等,即可判斷四邊形是平行四邊形;

2)根據(jù)一組對邊平行且相等,即可判斷四邊形是平行四邊形;

3)根據(jù)題意可得,△ABC是等邊三角形,可推出,可得,根據(jù)勾股定理即可得出的長.

:1)四邊形是平行四邊形,

理由:∵兩塊三角尺全等,

,

∴四邊形是平行四邊形;

2)四邊形是平行四邊形,

理由:∵四邊形是平行四邊形,

,

由平移的性質(zhì)可得:,

,

,

∴四邊形是平行四邊形;

3)∵,

∴△ABC是等邊三角形,

,

,

,

中,根據(jù)勾股定理得,

的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過DDE⊥ACE,DF⊥ABBA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中的網(wǎng)格由單位正方形構(gòu)成,中,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為

1的長為_______;

2)求證:;

3)若以、、及點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,寫出點(diǎn)在第一象限時(shí)的坐標(biāo)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=+mx+3x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),

1)求m的值及拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)P是拋物線對稱軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠BAC=120°ADBCD,且AB+BD=DC,則∠C的度數(shù)是( 。

A. 20°B. 30°C. 45°D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=8cm,BC=12cm,EAB的中點(diǎn),動(dòng)點(diǎn)P在線段BC上以4cm/s的速度由點(diǎn)BC運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在線段CD上由點(diǎn)C向點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts).

1)當(dāng)t=2時(shí),求EBP的面積;

2)若動(dòng)點(diǎn)Q以與動(dòng)點(diǎn)P不同的速度運(yùn)動(dòng),經(jīng)過多少秒,EBPCQP全等?此時(shí)點(diǎn)Q的速度是多少?

3)若動(dòng)點(diǎn)Q以(2)中的速度從點(diǎn)C出發(fā),動(dòng)點(diǎn)P以原來的速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿長方形ABCD的四邊形運(yùn)動(dòng),經(jīng)過多少秒,點(diǎn)P與點(diǎn)Q第一次在長方形ABCD的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CD△ABC∠ACB的角平分線,EAC上的一點(diǎn),且CD2=BC·CE,AD=6,AE=4.

(1)求證:△BCD∽△DCE;

(2)求證:△ADE∽△ACD;

(3)求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀光塔是濰坊市區(qū)的標(biāo)志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)為A(0,3)、B(3,4)C(2,2),(正方形網(wǎng)格中,每個(gè)小正方形邊長為1個(gè)單位長度)

1畫出△ABC向下平移4個(gè)單位得到的△A1B1C1;

2B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2△ABC位似,且位似比2∶1,直接寫出C2點(diǎn)坐標(biāo)是

3△A2BC2的面積是 平方單位.

查看答案和解析>>

同步練習(xí)冊答案