【題目】如圖,拋物線y=ax2+2x+c經(jīng)過(guò)點(diǎn)A(0,3),B(-1,0),請(qǐng)回答下列問(wèn)題:
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;
(2)拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)E,連接BD,求BD的長(zhǎng).
【答案】 (1) y=-x2+2x+3;(2) .
【解析】試題分析:
(1)把點(diǎn)A、B的坐標(biāo)代入解析式列方程組可求得的值,可得解析式;
(2)把(1)中所求解析式配方,可得頂點(diǎn)D的坐標(biāo),在Rt△BDE中由勾股定理可求得BD的長(zhǎng).
試題解析:
(1)∵拋物線y=ax2+2x+c經(jīng)過(guò)點(diǎn)A(0,3),B(-1,0),
∴解得,
∴二次函數(shù)的表達(dá)式為y=-x2+2x+3.
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴D(1,4).
∴DE=4,OE=1.
∵B(-1,0),
∴BO=1,
∴BE=2,
∴ 在Rt△BDE中,BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,某校準(zhǔn)備購(gòu)買(mǎi)一批文具袋和圓規(guī)作為獎(jiǎng)品,已知購(gòu)買(mǎi)1個(gè)文具袋和2個(gè)圓規(guī)需21元,購(gòu)買(mǎi)2個(gè)文具袋和3個(gè)圓規(guī)需39元。
(1)求文具袋和圓規(guī)的單價(jià)。
(2)學(xué)校準(zhǔn)備購(gòu)買(mǎi)文具袋20個(gè),圓規(guī)若干,文具店給出兩種優(yōu)惠方案:
方案一:購(gòu)買(mǎi)一個(gè)文具袋還送1個(gè)圓規(guī)。
方案二:購(gòu)買(mǎi)圓規(guī)10個(gè)以上時(shí),超出10個(gè)的部分按原價(jià)的八折優(yōu)惠,文具袋不打折.
①設(shè)購(gòu)買(mǎi)面規(guī)m個(gè),則選擇方案一的總費(fèi)用為______,選擇方案二的總費(fèi)用為______.
②若學(xué)校購(gòu)買(mǎi)圓規(guī)100個(gè),則選擇哪種方案更合算?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為拓展學(xué)生視野,促進(jìn)書(shū)本知識(shí)與生活實(shí)踐的深度融合,荊州市某中學(xué)組織八年級(jí)全體學(xué)生前往松滋洈水研學(xué)基地開(kāi)展研學(xué)活動(dòng).在此次活動(dòng)中,若每位老師帶隊(duì)14名學(xué)生,則還剩10名學(xué)生沒(méi)老師帶;若每位老師帶隊(duì)15名學(xué)生,就有一位老師少帶6名學(xué)生,現(xiàn)有甲、乙兩種大型客車(chē),它們的載客量和租金如表所示:
甲型客車(chē) | 乙型客車(chē) | |
載客量(人/輛) | 35 | 30 |
租金(元/輛) | 400 | 320 |
學(xué)校計(jì)劃此次研學(xué)活動(dòng)的租金總費(fèi)用不超過(guò)3000元,為安全起見(jiàn),每輛客車(chē)上至少要有2名老師.
(1)參加此次研學(xué)活動(dòng)的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車(chē)坐,又要保證每輛車(chē)上至少要有2名老師,可知租車(chē)總輛數(shù)為 輛;
(3)學(xué)校共有幾種租車(chē)方案?最少租車(chē)費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,E是OC上任意一點(diǎn),AG⊥BE于點(diǎn)G,交BD于點(diǎn)F.
(1)如圖1,若四邊形ABCD是正方形,
①求證:△AOF≌△BOE;
②連接EF,判斷EF與BC的位置關(guān)系,并說(shuō)明理由。
(2)如圖2,若四邊形ABCD是菱形, ∠ABC=1200,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過(guò)點(diǎn)E作EF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)計(jì)算技術(shù)和無(wú)線網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來(lái)越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對(duì)其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值為 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺(tái)移動(dòng)設(shè)備的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E為AD中點(diǎn),CE延長(zhǎng)線交BA延長(zhǎng)線于點(diǎn)F.
(1)求證:CD=AF;
(2)若BC=2CD,求證:∠F=∠BCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)==b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求a,b的值;
②若關(guān)于m的不等式組 恰好有3個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;
(2)若T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)前夕,小東媽媽準(zhǔn)備購(gòu)買(mǎi)若干個(gè)粽子和咸鴨蛋(每個(gè)棕子的價(jià)格相同,每個(gè)咸鴨蛋的價(jià)格相同).已知某超市粽子的價(jià)格比咸鴨蛋的價(jià)格貴1.8元,小東媽媽發(fā)現(xiàn),花30元購(gòu)買(mǎi)粽子的個(gè)數(shù)與花12元購(gòu)買(mǎi)的咸鴨蛋個(gè)數(shù)相同.
(1)求該超市粽子與咸鴨蛋的價(jià)格各是多少元?
(2)小東媽媽計(jì)劃購(gòu)買(mǎi)粽子與咸鴨蛋共18個(gè),她的一張購(gòu)物卡上還有余額40元,若只用這張購(gòu)物卡,她最多能購(gòu)買(mǎi)粽子多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com