【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在AC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系;
(2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問(wèn)中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過(guò)程;若變化,請(qǐng)說(shuō)明理由.
【答案】
(1)AF= AE
(2)
解:如圖②中,結(jié)論:AF= AE.
理由:連接EF,DF交BC于K.
∵四邊形ABFD是平行四邊形,
∴AB∥DF,
∴∠DKE=∠ABC=45°,
∴EKF=180°﹣∠DKE=135°,
∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,
∴∠EKF=∠ADE,
∵∠DKC=∠C,
∴DK=DC,
∵DF=AB=AC,
∴KF=AD,
在△EKF和△EDA中,
,
∴△EKF≌△EDA,
∴EF=EA,∠KEF=∠AED,
∴∠FEA=∠BED=90°,
∴△AEF是等腰直角三角形,
∴AF= AE
(3)
解:如圖③中,結(jié)論不變,AF= AE.
理由:連接EF,延長(zhǎng)FD交AC于K.
∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,
∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,
∴∠EDF=∠ACE,
∵DF=AB,AB=AC,
∴DF=AC
在△EDF和△ECA中,
,
∴△EDF≌△ECA,
∴EF=EA,∠FED=∠AEC,
∴∠FEA=∠DEC=90°,
∴△AEF是等腰直角三角形,
∴AF= AE
【解析】解:(1)如圖①中,結(jié)論:AF= AE.
理由:∵四邊形ABFD是平行四邊形,
∴AB=DF,
∵AB=AC,
∴AC=DF,
∵DE=EC,
∴AE=EF,
∵∠DEC=∠AEF=90°,
∴△AEF是等腰直角三角形,
∴AF= AE.
故答案為AF= AE.
(1)如圖①中,結(jié)論:AF= AE,只要證明△AEF是等腰直角三角形即可.(2)如圖②中,結(jié)論:AF= AE,連接EF,DF交BC于K,先證明△EKF≌△EDA再證明△AEF是等腰直角三角形即可.(3)如圖③中,結(jié)論不變,AF= AE,連接EF,延長(zhǎng)FD交AC于K,先證明△EDF≌△ECA,再證明△AEF是等腰直角三角形即可.本題考查四邊形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、平行四邊形的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),尋找全等的條件是解題的難點(diǎn),屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F是CD上一點(diǎn),且CF=CD,求證:∠AEF=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市為全面推進(jìn)“十個(gè)全覆蓋”工作,綠化提質(zhì)改造工程如火如荼地進(jìn)行,某施工隊(duì)計(jì)劃購(gòu)買甲、乙兩種樹苗共600棵對(duì)某標(biāo)段道路進(jìn)行綠化改造,已知甲種樹苗每棵100元,乙種樹苗每棵200元.
(1)若購(gòu)買兩種樹苗的總金額為70000元,求需購(gòu)買甲、乙兩種樹苗各多少棵?
(2)若購(gòu)買甲種樹苗的金額不少于購(gòu)買乙種樹苗的金額,至少應(yīng)購(gòu)買甲種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1(2,2)在直線y=x上,過(guò)點(diǎn)A1作A1B1∥y軸交直線y= x于點(diǎn)B1 , 以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角△A1B1C1 , 再過(guò)點(diǎn)C1作A2B2∥y軸,分別交直線y=x和y= x于A2 , B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),A2B2為直角邊在A2B2的右側(cè)作等腰直角△A2B2C2…,按此規(guī)律進(jìn)行下去,則等腰直角△AnBnCn的面積為(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次課外實(shí)踐活動(dòng)中,同學(xué)們要測(cè)量某公園人工湖兩側(cè)A,B兩個(gè)涼亭之間的距離.如圖,現(xiàn)測(cè)得∠ABC=30°,∠CBA=15°,AC=200米,請(qǐng)計(jì)算A,B兩個(gè)涼亭之間的距離(結(jié)果精確到1米)(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E,F(xiàn)分別在邊AD,CD上,若∠EBF=45°,則△EDF的周長(zhǎng)等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校冬季會(huì)把課間操改為跑步,但是發(fā)現(xiàn)部分學(xué)生沒(méi)有穿運(yùn)動(dòng)鞋的習(xí)慣,為保證學(xué)生的安全,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制出如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題.
(I)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為_____;
(Ⅱ)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺部分補(bǔ)充完整;
(Ⅲ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)與中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0),B(0,﹣ ),C(2,0),其對(duì)稱軸與x軸交于點(diǎn)D
(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)若P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)
①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個(gè);
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F(xiàn)為垂足.下列結(jié)論:①△ABD≌△EBC; ②∠BCE+∠BCD=180°; ③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正確的是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com