【題目】如圖,在紙面上有一數(shù)軸,按要求折疊紙面:
(1)若折疊后數(shù)1對(duì)應(yīng)的點(diǎn)與數(shù)﹣1對(duì)應(yīng)的點(diǎn)重合,則此時(shí)數(shù)﹣3對(duì)應(yīng)的點(diǎn)與數(shù) 對(duì)應(yīng)的點(diǎn)重合;
(2)若折疊后數(shù)2對(duì)應(yīng)的點(diǎn)與數(shù)﹣4對(duì)應(yīng)的點(diǎn)重合,則此時(shí)數(shù)0對(duì)應(yīng)的點(diǎn)與數(shù)對(duì) 應(yīng)的點(diǎn)重合;若這樣折疊后,數(shù)軸上有A、B兩點(diǎn)也重合,且A、B兩點(diǎn)之間的距離為11(點(diǎn)B在A點(diǎn)的右側(cè)),則點(diǎn)A對(duì)應(yīng)的數(shù)為 ,點(diǎn)B對(duì)應(yīng)的數(shù)為 .
【答案】(1) 3;(2)﹣2,﹣6.5,4.5.
【解析】
(1)根據(jù)對(duì)稱的知識(shí),若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則對(duì)稱中心是原點(diǎn),從而找﹣3的對(duì)稱點(diǎn);
(2)根據(jù)題意找到對(duì)稱中心,從而求得0的對(duì)應(yīng)點(diǎn);因?yàn)?/span>A、B兩點(diǎn)之間的距離為11,所以A,B兩點(diǎn)與對(duì)稱中心的距離為5.5,且點(diǎn)B在A點(diǎn)的右側(cè),從而得到結(jié)果.
(1)根據(jù)題意,得對(duì)稱中心是原點(diǎn),則﹣3表示的點(diǎn)與數(shù)3表示的點(diǎn)重合;
(2)∵數(shù)2表示的點(diǎn)與數(shù)﹣4表示的點(diǎn)重合,
∴對(duì)稱中心是﹣1表示的點(diǎn),
∴數(shù)0表示的點(diǎn)與數(shù)﹣1﹣[0﹣(﹣1)]=﹣2表示的點(diǎn)重合;
∵數(shù)軸上A、B兩點(diǎn)之間的距離為11,
∴A,B兩點(diǎn)與對(duì)稱中心的距離為5.5,
又∵點(diǎn)B在A點(diǎn)的右側(cè),
∴點(diǎn)A對(duì)應(yīng)的數(shù)為﹣6.5,點(diǎn)B對(duì)應(yīng)的數(shù)為4.5;
故答案為:(1)3;(2)﹣2,﹣6.5,4.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.
(1)若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣4表示的點(diǎn)與數(shù) _________ 表示的點(diǎn)重合;
(2)若﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問題:
①13表示的點(diǎn)與數(shù) _________ 表示的點(diǎn)重合;
②若數(shù)軸上A、B兩點(diǎn)之間的距離為2018(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,求A、B兩點(diǎn)表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)﹣12+15﹣|﹣7﹣8|
(2)(﹣3)×(﹣9)﹣(﹣5)
(3)
(4)
化簡(jiǎn):(5)
(6)7a+3(a-3b)-2(b-3a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+2x+b的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊△ABD沿BD中點(diǎn)旋轉(zhuǎn)180°得到△BDC.現(xiàn)給出下列命題:
①四邊形ABCD是菱形;
②四邊形ABCD是中心對(duì)稱圖形;
③四邊形ABCD是軸對(duì)稱圖形;
④AC=BD.
其中正確的是(寫上正確的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=3a2b﹣2ab2+abc,小明同學(xué)錯(cuò)將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b﹣3ab2+4abc.
(1)計(jì)算B的表達(dá)式;
(2)求出2A﹣B的結(jié)果;
(3)小強(qiáng)同學(xué)說(2)中的結(jié)果的大小與c的取值無關(guān),對(duì)嗎?若a=,b=,
求(2)中式子的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;
(2)平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2;
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)?jiān)谧鴺?biāo)系中作出旋轉(zhuǎn)中心S并寫出旋轉(zhuǎn)中心S的坐標(biāo):S
(4)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)作圖標(biāo)出P點(diǎn)并寫出點(diǎn)P的坐標(biāo).P .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)F為弦AC的中點(diǎn),連接OF并延長(zhǎng)交⊙O于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:AC∥DE;
(2)若OA=AE=4,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com