【題目】在國家“一帶一路”發(fā)展戰(zhàn)略等多種因素影響下,某企業(yè)的利潤逐年提高,據(jù)統(tǒng)計,該企業(yè)2016年利潤為3億元,2018年利潤為4.32億元,若2019年保持前兩年的年平均增長率不變,該企業(yè)2019年利潤能否超過5億元?
科目:初中數(shù)學 來源: 題型:
【題目】滴滴快車是一種便捷的出行工具,某地區(qū)計價規(guī)則如表:
計費項目 | 里程費 | 時長費 | 遠途費 |
單價 | 1.8元/公里 | 0.3元/分鐘 | 0.8元/公里 |
注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元. |
小明與小亮各自乘坐滴滴快車,行車里程分別為6公里與8公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差_____分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定,以二次函數(shù)y=ax2+bx+c的二次項系數(shù)a的2倍為一次項系數(shù),一次項系數(shù)b為常數(shù)項構造的一次函數(shù)y=2ax+b叫做二次函數(shù)y=ax2+bx+c的“子函數(shù)”,反過來,二次函數(shù)y=ax2+bx+c叫做一次函數(shù)y=2ax+b的“母函數(shù)”.
(1)若一次函數(shù)y=2x-4是二次函數(shù)y=ax2+bx+c的“子函數(shù)”,且二次函數(shù)經過點(3,0),求此二次函數(shù)的解析式及頂點坐標.
(2)若“子函數(shù)”y=x-6的“母函數(shù)”的最小值為1,求“母函數(shù)”的函數(shù)表達式.
(3)已知二次函數(shù)y=-x2-4x+8的“子函數(shù)”圖象直線l與x軸、y軸交于C、D兩點,動點P為二次函數(shù)y=-x2-4x+8對稱軸右側上的動點,求△PCD的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2﹣x+c經過A(﹣2,0),B(0,2)兩點,動點P,Q同時從原點出發(fā)均以1個單位/秒的速度運動,動點P沿x軸正方向運動,動點Q沿y軸正方向運動,連接PQ,設運動時間為t秒
(1)求拋物線的解析式;
(2)當BQ=AP時,求t的值;
(3)隨著點P,Q的運動,拋物線上是否存在點M,使△MPQ為等邊三角形?若存在,請求出t的值及相應點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個函數(shù)y1和y2,若對于每個使函數(shù)有意義的實數(shù)x,函數(shù)y的值為兩個函數(shù)值中較小的數(shù),則稱函數(shù)y為這兩個函數(shù)y1、y2的較小值函數(shù).例如:y1=x+1,y2=﹣2x+4,則y1,y2的較小值函數(shù)為y=.
(1)函數(shù)y是函數(shù)y1=,y2=x的較小值函數(shù).
①在如圖的平面直角坐標系中畫出函數(shù)y的圖象.
②寫出函數(shù)y的兩條性質.
(2)函數(shù)y是函數(shù)y1=x2﹣2x+1,y2=x+1的取較小值函數(shù).a≤x≤時,函數(shù)值y的取值范圍為0≤y≤b.當a取某個范圍內的任意值時,b為定值.直接寫出滿足條件的a的取值范圍及其對應的b的值.
(3)函數(shù)y是函數(shù)y1=x2﹣2mx,y2=mx(m為常數(shù),且m≠0)的較小值函數(shù).當m﹣2≤x≤1時,隨著x的增大,函數(shù)y先增大后減小,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明、小軍兩同學做游戲,游戲規(guī)則是:一個不透明的文具袋中,裝有型號完全相同的3支紅筆和2支黑筆,兩人先后從袋中取出一支筆(不放回),若兩人所取筆的顏色相同,則小明勝,否則,小軍勝.
(1)請用樹形圖或列表法列出摸筆游戲所有可能的結果;
(2)請計算小明獲勝的概率,并指出本游戲規(guī)則是否公平,若不公平,你認為對誰有利.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】y=x2+(1﹣a)x+1是關于x的二次函數(shù),當x的取值范圍是1≤x≤3時,y在x=1時取得最大值,則實數(shù)a的取值范圍是( 。
A. a≤﹣5B. a≥5C. a=3D. a≥3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).
(1)請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側,畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com