【題目】某種蔬菜的銷售單價(jià)y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)

1)分別求出y1、y2的函數(shù)關(guān)系式(不寫自變量取值范圍);

2)通過計(jì)算說明:哪個(gè)月出售這種蔬菜,每千克的收益最大?

【答案】1y1;y2x24x+13;(25月出售每千克收益最大,最大為

【解析】

1)觀察圖象找出點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出y1y2的解析式;

2)由收益W=y1-y2列出Wx的函數(shù)關(guān)系式,利用配方求出二次函數(shù)的最大值.

解:(1)設(shè)y1kx+b,將(3,5)和(63)代入得,,解得

∴y1=﹣x+7

設(shè)y2ax62+1,把(34)代入得,

4a362+1,解得a

∴y2x62+1,即y2x24x+13

2)收益Wy1y2,

=﹣x+7﹣(x24x+13

=﹣x52+,

∵a=﹣0,

當(dāng)x5時(shí),W最大值

5月出售每千克收益最大,最大為元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,則旋轉(zhuǎn)中心的坐標(biāo)是(  )

A.0,0B.1,0C.1,﹣1D.1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBECF,它們依次交直線l1、l2于點(diǎn)AB、C和點(diǎn)D、EF,AC=14;

1)求AB、BC的長(zhǎng);

2)如果AD=7CF=14,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AD+2,已知點(diǎn)E是邊AB上的一動(dòng)點(diǎn)(不與A、B重合)將△ADE沿DE對(duì)折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為P,當(dāng)△APB是等腰三角形時(shí),AE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)ax2+bx+c的部分對(duì)應(yīng)值如表,利用二次的數(shù)的圖象可知,當(dāng)函數(shù)值y0時(shí),x的取值范圍是( 。

x

3

2

1

0

1

2

y

12

5

0

3

4

3

A.0x2B.x0x2C.1x3D.x<﹣1x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD.

1)作∠B的平分線交ADE點(diǎn)。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法)

2)若ABCD的周長(zhǎng)為10,CD=2,求DE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置,此時(shí)AC′的中點(diǎn)恰好與D點(diǎn)重合,AB′CD于點(diǎn)E.若AB=6,則AEC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來解;求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來解:求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過因式分解把它轉(zhuǎn)化為,解方程,可得方程的解.利用上述材料給你的啟示,解下列方程;

1;

2

查看答案和解析>>

同步練習(xí)冊(cè)答案