【題目】如圖,矩形紙片中,,把紙片沿直線折疊,點落在處,交于點,若,則的面積為( )
A.B.C.D.
【答案】A
【解析】
由矩形的性質(zhì)可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折疊的性質(zhì)可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的長,即可求△ABC的面積.
解:∵四邊形ABCD是矩形
∴∠B=90°,AB∥CD
∴∠DCA=∠CAB
∵把紙片ABCD沿直線AC折疊,點B落在E處,
∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,
∴∠DCA=∠EAC
∴AO=OC=5cm
∴,
∴AE=AO+OE=8cm,
∴AB=8cm,
∴△ABC的面積=×AB×BC=16cm2,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市計劃修建一條長60千米的地鐵,根據(jù)甲,乙兩個地鐵修建公司標(biāo)書數(shù)據(jù)發(fā)現(xiàn):甲,乙兩公司每天修建地鐵長度之比為3:5;甲公司單獨完成此項工程比乙公司單獨完成此項工程要多用240天.
(1)求甲,乙兩個公司每天分別修建地鐵多少千米?
(2)該市規(guī)定:“該工程由甲,乙兩個公司輪流施工完成,工期不超過450天,且甲公司工作天數(shù)不少于乙公司工作天數(shù)的”.設(shè)甲公司工作a天,乙公司工作b天.
①請求出b與a的函數(shù)關(guān)系式及a的取值范圍;
②設(shè)完成此項工程的工期為W天,請求出W的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°,然后再向下平移2個單位,則A點的對應(yīng)點A′的坐標(biāo)為( 。
A. (﹣4,﹣2﹣) B. (﹣4,﹣2+) C. (﹣2,﹣2+) D. (﹣2,﹣2﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具店將進(jìn)貨價為元的玩具以元的銷售價售出,平均每月能售出個市場調(diào)研表明:當(dāng)銷售價每漲價元時,其銷售量將減少2個.
(1)設(shè)每個玩具的銷售價上漲元,試用含的式子填空:
①漲價后,每個玩具的銷售價為 元;
②漲價后,每個玩具的利潤為 元;
③漲價后,玩具的月銷售量為 個.
(2)玩具店老板要想讓該玩具的銷售利潤平均每月達(dá)到1600元,銷售員甲說:“在原售價每個90元的基礎(chǔ)上再上漲30元,可以完成任務(wù)”銷售員乙說:“不用漲那么多,在原售價每個90元的基礎(chǔ)上再上漲10元就可以了”判斷銷售員甲與銷售員乙的說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=(k常數(shù),k≠1).
(1)若點A(2,1)在這個函數(shù)的圖象上,求k的值;
(2)若k=9,試判斷點B(﹣,﹣16)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用a、b、c作三角形的三邊,其中不能構(gòu)成直角三角形的是( 。
A. a2=(b+c)(b﹣c) B. a:b:c=1: :2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題)先閱讀下列一段文字,然后解答問題:
已知:方程
方程
方程
方程
問題:觀察上述方程及其解,再猜想出方程: 的解,并試著解分式方程驗證.
【答案】
【解析】試題分析:首先通過觀察發(fā)現(xiàn),它的規(guī)律是:方程x的解為x1=n+1,x2=,利用這個規(guī)律就可以求出方程的解.
試題解析:∵
∴x2-11x-120=0
解得: .
【題型】解答題
【結(jié)束】
20
【題目】(2017北京市)關(guān)于x的一元二次方程.
(1)求證:方程總有兩個實數(shù)根;
(2)若方程有一根小于1,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),一架長4米的梯子AB斜靠在與地面OM垂直的墻ON上,梯子與地面的傾斜角α為60°.
(1)求AO與BO的長;
(2)若梯子頂端A沿NO下滑,同時底端B沿OM向右滑行.如圖(2),當(dāng)A點下滑到A′點,B點向右滑行到B′點時,梯子AB的中點P也隨之運動到P′點,若∠POP′=15°,試求AA′的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com