【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長(zhǎng)EF交AD的延長(zhǎng)線于G,當(dāng)FG=1時(shí),求AD的長(zhǎng).
【答案】(1)證明見解析,(2)2.
【解析】
試題分析:(1)通過證明△ODF與△OBE全等即可求得.
(2)由△ADB是等腰直角三角形,得出∠A=45°,因?yàn)镋F⊥AB,得出∠G=45°,所以△ODG與△DFG都是等腰直角三角形,從而求得DG的長(zhǎng)和EF=2,然后等腰直角三角形的性質(zhì)即可求得.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴DC=AB,DC∥AB,
∴∠ODF=∠OBE,
在△ODF與△OBE中
∴△ODF≌△OBE(AAS)
∴BO=DO;
(2)解:∵BD⊥AD,
∴∠ADB=90°,
∵∠A=45°,
∴∠DBA=∠A=45°,
∵EF⊥AB,
∴∠G=∠A=45°,
∴△ODG是等腰直角三角形,
∵AB∥CD,EF⊥AB,
∴DF⊥OG,
∴OF=FG,△DFG是等腰直角三角形,
∵△ODF≌△OBE(AAS)
∴OE=OF,
∴GF=OF=OE,
即2FG=EF,
∵△DFG是等腰直角三角形,
∴DF=FG=1,∴DG==DO,
∴在等腰RT△ADB 中,DB=2DO=2=AD
∴AD=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON=30°,公路PQ上A處距O點(diǎn)240米,如果火車行駛時(shí),周圍200米以內(nèi)會(huì)受到噪音的影響,那么火車在鐵路MN上沿ON方向以72千米/時(shí)的速度行駛時(shí),求A處受噪音影響的時(shí)間。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若三角形的兩個(gè)內(nèi)角的和是85°,那么這個(gè)三角形是( )
A. 鈍角三角形 B. 直角三角形 C. 銳角三角形 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12厘米,BC=9厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米/秒的速度由B向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,1秒鐘時(shí),△BPD與△CQP是否全等,請(qǐng)說明;
(2)點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD≌△CPQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.
(1)求證:AE=EF.
(2)如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn) ”其余條件不變,那么結(jié)論AE=EF是否成立呢?若成立,請(qǐng)你證明這一結(jié)論,若不成立,請(qǐng)你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橋梁上的拉桿,電視塔的底座,都是三角形結(jié)構(gòu),而活動(dòng)掛架是四邊形結(jié)構(gòu),這是分別利用三角形和四邊形的________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.
(1)求證:AE=EF.
(2)如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn) ”其余條件不變,那么結(jié)論AE=EF是否成立呢?若成立,請(qǐng)你證明這一結(jié)論,若不成立,請(qǐng)你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,已知、、三點(diǎn),其中、、滿足關(guān)系式, ≤.
(1)=_______; =________; =_______.
(2)如果點(diǎn)是第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),坐標(biāo)為.將四邊形的面積用表示,請(qǐng)你寫出關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點(diǎn),使得四邊形的面積與的面積相等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com