【題目】解方程:
(1)(2x﹣5)2﹣9=0
(2)4x2+2x﹣1=0
(3)(x﹣1)2+2x(x﹣1)=0
(4)x2+6x﹣9991=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,其中圖象與x軸交于點A(-1,0),與y軸交于點C(0,-5),且經(jīng)過點D(3,-8).(1)求此二次函數(shù)的解析式; (2)用配方法將將此二次函數(shù)的解析式寫成的形式,并直接寫出此二次函數(shù)圖象的頂點坐標(biāo)以及它與x軸的另一個交點B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,的頂點均在格點上,請在所給直角坐標(biāo)系中按要求畫圖和解答下列問題:
以原點為對稱中心,畫出的中心對稱圖形.
以原點為位似中心,在原點的另一側(cè)畫出的位似三角形,與的位似比為;
的面積________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x2+(a+3)x+a+1=0是關(guān)于x的一元二次方程.
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)若方程的一個實數(shù)根為1,求實數(shù)a的值和另一個實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,AD與BC相交于點E,且BE=CE.
(1)請判斷AD與BC的位置關(guān)系,并說明理由;
(2)若BC=6,ED=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,請直接寫出所有滿足條件的AC的長;
(2)如圖1,在四邊形ABCD中,AD∥BC,對角線BD平分∠ABC,∠BAC=∠ADC.
①求證:△ABC∽△DCA;②求證:△ABC是比例三角形;
(3)如圖2,在(2)的條件下,當(dāng)∠ADC=90°時,求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生王強(qiáng)積極響應(yīng)“自主創(chuàng)業(yè)”的號召,準(zhǔn)備投資銷售一種進(jìn)價為每件40元
的小家電.通過試營銷發(fā)現(xiàn),當(dāng)銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)
與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)王強(qiáng)每月獲得的利潤為p(元),求p與x之間的函數(shù)關(guān)系式;如果王強(qiáng)想要每月獲得2400元的
利潤,那么銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.
(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;
②拋物線與的“完美三角形”的斜邊長的數(shù)量關(guān)系是 ;
(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+8交x軸于點E,點A為x軸上的一個動點(點A不與點E重合),在直線l上取一點B(點B在x軸上方),使BE=5AE,連接AB,以AB為邊沿順時針方向作正方形ABCD,連結(jié)OB,以OB為直徑作⊙P.
(1)當(dāng)點A在點E右側(cè)時.
①若點B剛好落在y軸上,則線段BE的長為 ,點D的坐標(biāo)為 .
②若點A的坐標(biāo)為(9,0),求正方形ABCD的邊長.
(2)⊙P與正方形ABCD的邊相切于點B,求點B的坐標(biāo).
(3)點Q為⊙P與直線BE的交點,連接CQ,當(dāng)CQ平分∠BCD時,點B的坐標(biāo)為 .(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com