【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點P從點A出發(fā)沿AB以2cm/s的速度向點終點B運動,同時點Q從點B出發(fā)沿BC以1cm/s的速度向點終點C運動,它們到達終點后停止運動.
(1)幾秒后,點P、D的距離是點P、Q的距離的2倍;
(2)幾秒后,△DPQ的面積是24cm2.
【答案】(1)3;(2)4.
【解析】【試題分析】(1)設t秒后點P、D的距離是點P、Q距離的2倍,即PD=2PQ
因為四邊形ABCD是矩形,根據(jù)矩形的性質得,∠A=∠B=90°利用勾股定理得:PD2=AP2+AD2 ,PQ2=BP2+BQ2,由于PD2=4 PQ2,即82+(2t)2=4[(10-2t)2+t2],
解得:t1=3,t2=7(舍去),即t=3;
(2) 設x秒后△DPQ的面積是24cm2,根據(jù)矩形的面積等于三個直角三角形的面積加上24,即
x1=x2=4,即4秒后,△DPQ的面積是24cm2.
【試題解析】
(1)設t秒后點P、D的距離是點P、Q距離的2倍,
∴PD=2PQ
∵四邊形ABCD是矩形
∴∠A=∠B=90°
∴PD2=AP2+AD2 ,PQ2=BP2+BQ2
∵PD2=4 PQ2,∴82+(2t)2=4[(10-2t)2+t2],
解得:t1=3,t2=7;
∵t=7時10-2t<0,∴t=3
(2) 設x秒后△DPQ的面積是24cm2,
∴
整理得x2-8x+16=0
解得x1=x2=4
即4秒后,△DPQ的面積是24cm2.
科目:初中數(shù)學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小龍在全校隨機抽取了一部分同學就“我最喜愛的體育項目”進行了一次調查(每位同學必選且只選一項)下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)小龍一共抽取了 名學生.
(2)補全條形統(tǒng)計圖.
(3)求“立定跳遠”部分對應的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】符合下列條件之一的四邊形不一定是菱形的是( )
A. 四條邊相等
B. 兩組鄰邊分別相等
C. 對角線相互垂直平分
D. 兩條對角線分別平分一組對角
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有四張正面分別標有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機地摸取一張,將卡片上的數(shù)字記為n.
(1)請畫出樹狀圖并寫出(m,n)所有可能的結果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經過第二、三、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:該商場計劃購進兩種手機若干部,共需15.5萬元,預計全部銷售后可獲毛利潤共2.1萬元.(毛利潤=(售價﹣進價)×銷售量)
(1)該商場計劃購進甲、乙兩種手機各多少部?
(2) 通過市場調研,該商場決定在原計劃的基礎上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com