【題目】如圖,拋物線y=-x2-2x+3 的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)設點H是第二象限內(nèi)拋物線上的一點,且△HAB的面積是6,求點H的坐標;
(3)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積.
【答案】(1)A(-3,0),B(1,0),C(0,3);(2)H(-2,3);(3).
【解析】
試題分析:(1)通過解析式即可得出C點坐標,令y=0,解方程得出方程的解,即可求得A、B的坐標.
(2)根據(jù)AB的長和三角形面積求得H的縱坐標為3,代入解析式即可求得橫坐標;
(3)設M點橫坐標為m,則PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,矩形PMNQ的周長d=-2m2-8m+2,將-2m2-8m+2配方,根據(jù)二次函數(shù)的性質,即可得出m的值,然后求得直線AC的解析式,把x=m代入可以求得三角形的邊長,從而求得三角形的面積.
試題解析:(1)由拋物線y=-x2-2x+3可知,C(0,3),
令y=0,則0=-x2-2x+3,解得x=-3或x=1,
∴A(-3,0),B(1,0).
(2)∵A(-3,0),B(1,0).
∴AB=4,
∵△HAB的面積是6,點H是第二象限內(nèi)拋物線上的一點,
∴H的縱坐標為3,
把y=3代入y=-x2-2x+3得3=-x2-2x+3,解得x1=0,x2=-2,
∴H(-2,3);
(3)由拋物線y=-x2-2x+3可知,對稱軸為x=-1,
設M點的橫坐標為m,則PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,
∴矩形PMNQ的周長=2(PM+MN)=(-m2-2m+3-2m-2)×2=-2m2-8m+2=-2(m+2)2+10,
∴當m=-2時矩形的周長最大.
∵A(-3,0),C(0,3),設直線AC解析式為y=kx+b,
則解得:,
∴解析式y(tǒng)=x+3,當x=-2時,則E(-2,1),
∴EM=1,AM=1,
∴S=×AM×EM=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC的邊BC的中垂線DM交∠BAC的平分線AD于D, DE⊥AB于點E,DF⊥AC于F.連接DB、DC
(1)求證:△DBE≌△DFC.
(2)求證:AB+AC=2AE
(3)如圖2,若△ABC的邊BC的中垂線DM交∠BAC的外角平分線AD于D, DE⊥AB于點E,且AB>AC,寫出AE、BE、AC之間的等量關系。(不需證明,只需在圖2中作出輔助線、說明證哪兩個三角形全等即可)。
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只螞蟻從數(shù)軸上A點出發(fā)爬了4個單位長度到了表示1的點B,則點A所表示的數(shù)是( )
A. 3或5 B. 5或3 C. 5 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幼兒園的小朋友打算選擇一種形狀、大小都相同的多邊形塑料膠板鋪地面.為了保證鋪地時既無縫隙,又不重疊,請你告訴他們可以選擇哪些形狀的塑料膠板(填三種) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】證明定理:三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等,已知:
如圖,在△ABC中,分別作AB邊、BC邊的垂直平分線,兩線相交于點P,分別交AB邊、BC邊于點E、F.
求證:AB、BC、AC的垂直平分線相交于點P
證明:∵點P是AB邊垂直平線上的一點,
∴ = ( ).
同理可得,PB= .
∴ = (等量代換).
∴ (到一條線段兩個端點距離相等的點,在這條線段的 )
∴AB、BC、AC的垂直平分線 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABD和△ACE中,有下列四個等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個條件為題設,填入已知欄中,一個論斷為結論,填入下面求證欄中,使之組成一個真命題,并寫出證明過程.
已知: .
求證: .
證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com