【題目】幼兒園的小朋友打算選擇一種形狀、大小都相同的多邊形塑料膠板鋪地面.為了保證鋪地時既無縫隙,又不重疊,請你告訴他們可以選擇哪些形狀的塑料膠板(填三種)

【答案】正三角形、正方形、長方形、正六邊形、直角三角形、直角梯形(寫出其它圖形,只要符合題目要求,均可得分)
【解析】正三角形、正方形的內(nèi)角分別為60度、90度,都能整除周角360度,能鑲嵌密鋪,長方形、正六邊形的每個內(nèi)角分別為90度、120度,也能密鋪,直角三角形、直角梯形的內(nèi)角和也能整除360度,也能密鋪.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個等腰三角形一邊長為4cm,另一邊長為5cm,那么這個等腰三角形的周長是(

A.13cm B.14cm C.13cm或14cm D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于O的“反演點(diǎn)”.

如圖2,O的半徑為4,點(diǎn)B在O上,BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于O的反演點(diǎn),求A′B′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】收入和支出是一對具有相反意義的量,如果收入1000元記作+1000元,那么-600元表示________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠B=C,AB=AC=10cm,BC=8cm,點(diǎn)DAB的中點(diǎn).

1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.

①若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1s后,BPDCQP是否全等,請說明理由;

②若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時,能夠使BPDCQP全等?

2)若點(diǎn)Q以②中的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時出發(fā),都逆時針沿ABC三邊運(yùn)動,求經(jīng)過多長時間點(diǎn)P與點(diǎn)Q第一次在ABC邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,C=90°,BC=7cm,AC=5,點(diǎn)P從B點(diǎn)出發(fā),沿BC方向以2m/s的速度移動,點(diǎn)Q從C出發(fā),沿CA方向以1m/s的速度移動.

(1)若P、Q同時分別從B、C出發(fā),那么幾秒后,PCQ的面積等于4?

(2)若P、Q同時分別從B、C出發(fā),那么幾秒后,PQ的長度等于5?

(3)PCQ的面積何時最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2-2x+3 的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求A、B、C的坐標(biāo);

(2)設(shè)點(diǎn)H是第二象限內(nèi)拋物線上的一點(diǎn),且HAB的面積是6,求點(diǎn)H的坐標(biāo);

(3)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQAB交拋物線于點(diǎn)Q,過點(diǎn)Q作QNx軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時,求AEM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:①垂直于弦的直徑平分弦以及弦所對的兩條;②在同圓或等圓中,相等的弦所對的圓周角相等;③三角形有且只有一個外接圓;④矩形一定有一個外接圓;⑤三角形的外心到三角形三邊的距離相等。其中真命題的個數(shù)有( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,根據(jù)圖中數(shù)據(jù)完成填空,再按要求答題:

sin2A1+sin2B1= ;sin2A2+sin2B2= ;sin2A3+sin2B3=

(1)觀察上述等式,猜想RtABC,C=90°,都有sin2A+sin2B=

(2)如圖,在RtABC中,C=90°,A、B、C的對邊分別是a、b、c,利用三角函數(shù)的定義和勾股定理,證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案