【題目】如圖,已知BE=CF,AB∥CD,AB=CD.求證:AF∥DE.
【答案】解:∵BE=CF,
∴BE+EF=CF+EF,
∴BF=CE,
∵AB∥CD,
∴∠B=∠C,
在△ABF和△CDE中 ,
∴△ABF≌△CDE(SAS),
∴∠AFB=∠DEC,
∴AF∥DE.
【解析】首先利用等式的性質(zhì)可得BF=CE,再根據(jù)平行線的性質(zhì)可得∠B=∠C,然后利用SAS定理判定△ABF≌△CDE,進(jìn)而可得∠AFB=∠DEC,從而可得結(jié)論.
【考點(diǎn)精析】利用平行線的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)的點(diǎn)A(-1,2)與點(diǎn)B(-1,-2)的位置關(guān)系是( )
A. 關(guān)于y軸對(duì)稱 B. 關(guān)于x軸對(duì)稱 C. 關(guān)于原點(diǎn)對(duì)稱 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,DE垂直平分AB,DE=2cm.求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點(diǎn)E、F分別是邊AD、AB的中點(diǎn),連接EF.
(1)如圖1,若點(diǎn)G是邊BC的中點(diǎn),連接FG,則EF與FG關(guān)系為: ;
(2)如圖2,若點(diǎn)P為BC延長(zhǎng)線上一動(dòng)點(diǎn),連接FP,將線段FP以點(diǎn)F為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)900,得到線段FQ,連接EQ,請(qǐng)猜想EF、EQ、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P為CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,在圖3中補(bǔ)全圖形,并直接寫出EF、EQ、BP三者之間的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以菱形AOBC的頂點(diǎn)O為原點(diǎn),對(duì)角線OC所在直線為x軸建立平面直角坐標(biāo)系,若OB=5,點(diǎn)C的坐標(biāo)為(8,0),則點(diǎn)A的坐標(biāo)為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com