【題目】如圖,在矩形紙片ABCD中,AB=3,BC=9.將矩形紙片折疊,使點(diǎn)B和點(diǎn)D重合.

1)求ED的長;

2)求折痕EF的長.

【答案】(1)5;(2)

【解析】

1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明三角形DEF為等腰三角形,從而得到ED=DF,設(shè)DE=x,則DF=x,FC=9-x,然后在DFC中依據(jù)勾股定理列方程求解即可;
2)過點(diǎn)EEM垂直于BC,垂足為M.先求得MF的長度,然后依據(jù)勾股定理可求得EF的長.

解:(1)∵四邊形ABCD為矩形,

AB=CD=3

ADBC

∴∠BFE=DEF

∵∠BFE=EFD,

∴∠EFD=DEF,

DE=DF

設(shè)DE=x,則DF=xFC=9x

RtDFC中,FC2+DC2=DF2,

∴(9x2+32=x2.解得x=5

DE=5

2)過點(diǎn)EEM垂直于BC,垂足為M

根據(jù)(1)可知BF=DF=5,

AE=CF=4,

AE=CF=4BF=DF=5,

MF=BFBM=54=1

RtMEF中,EF2=EM2+MF2=32+12=10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在菱形ABCD中,∠B=∠EAF60°,∠BAE20°,則∠AEF的大小是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線頂點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).

)這個(gè)二次函數(shù)的表達(dá)式為____________.

)設(shè)直線的解析式為,則不等式的解集為___________.

)連結(jié)、,并把沿翻折,得到四邊形,那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

)當(dāng)四邊形的面積最大時(shí),求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.

)若把條件點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).改為點(diǎn)是拋物線上的任一動(dòng)點(diǎn),其它條件不變,當(dāng)以、、為頂點(diǎn)的四邊形為梯形時(shí),直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分OBE,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)P在AD邊上以每秒1cm 的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有__次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為,點(diǎn)和點(diǎn)分別同時(shí)從點(diǎn)和點(diǎn)出發(fā),以每秒個(gè)單位長度,每秒個(gè)單位長度的速度向數(shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.

(1)當(dāng)時(shí),則、兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別是_____________;

(2)點(diǎn)是數(shù)軸上點(diǎn)左側(cè)一點(diǎn),其對(duì)應(yīng)的數(shù)是,且,求的值;

(3)在點(diǎn)和點(diǎn)出發(fā)的同時(shí),點(diǎn)以每秒個(gè)單位長度的速度從點(diǎn)出發(fā),開始向左運(yùn)動(dòng),遇到點(diǎn)后立即返回向右運(yùn)動(dòng),遇到點(diǎn)后立即返回向左運(yùn)動(dòng),與點(diǎn)相遇后再立即返回,如此往返,直到、兩點(diǎn)相遇時(shí),點(diǎn)停止運(yùn)動(dòng),求點(diǎn)運(yùn)動(dòng)的路程一共是多少個(gè)單位長度?點(diǎn)停止的位置所對(duì)應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(

A. 12B. 24C. 12D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為楊輝三角.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!楊輝三角中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+bnn為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù)。

例如,展開式中的系數(shù)1、21恰好對(duì)應(yīng)圖中第三行的數(shù)字;

再如,展開式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字。

請(qǐng)認(rèn)真觀察此圖,寫出(a+b4的展開式,(a+b4=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連接OD.

(1)求證:△COD是等邊三角形;

(2)當(dāng)a=150°時(shí),試判斷△AOD的形狀,并說明理由;

(3)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案