【題目】在坐標(biāo)系中作出函數(shù)的圖象,利用圖象解答下列問題:

1)求方程的解:

2)求不等式的解集;

3)若,求的取值范圍.

【答案】1 (2)3

【解析】

1)利用一次函數(shù)圖像來解一元一次方程,當(dāng)縱坐標(biāo)為0時(shí),橫坐標(biāo)的數(shù)值即為方程解.

2)不等式可以看作函數(shù)的圖像在函數(shù) 的圖像的上方所有點(diǎn)的橫坐標(biāo)的集合.

3可以看作函數(shù)的圖像和函數(shù)所截線段之間所有點(diǎn)的橫坐標(biāo)的集合.

1

見圖1,方程的解,即為函數(shù)圖像與x軸的交點(diǎn),點(diǎn)A,即當(dāng)縱坐標(biāo)y0時(shí),橫坐標(biāo)x的數(shù)值,由圖示得,.

2

見圖2,不等式的解集是函數(shù)的圖像在函數(shù) 的圖像的上方所有點(diǎn)的橫坐標(biāo)的集合.而兩圖像交點(diǎn),由圖示得,.

3

見圖3,的取值范圍,

函數(shù)的圖像和函數(shù)圖像所截EF之間所有點(diǎn)的橫坐標(biāo),由圖示得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2-(m+3)x+9的頂點(diǎn)C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點(diǎn),與x、y軸分別交于D、E兩點(diǎn).

(1)求m的值;

(2)求A、B兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為量角器(半圓O)的直徑,等腰直角△BCD的斜邊BD交量角器邊緣于點(diǎn)G,直角邊CD切量角器于讀數(shù)為60°的點(diǎn)E處(即弧AE的度數(shù)為60°),第三邊交量角器邊緣于點(diǎn)F處.

(1)求量角器在點(diǎn)G處的讀數(shù)α(90°<α<180°);

(2)若AB=12cm,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊三角板按圖1擺放,固定三角板ABC,將三角板CDE繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),其中∠A=45°,∠D=30°,設(shè)旋轉(zhuǎn)角為α,(0°<a<80°)

(1)當(dāng)DEAC時(shí)(如圖2),求α的值;

(2)當(dāng)DEAB時(shí)(如圖3).ABCE相交于點(diǎn)F,求α的值;

(3)當(dāng)0°<α<90°時(shí),連結(jié)AE(如圖4),直線ABDE相交于點(diǎn)F,試探究∠1+∠2+∠3的大小是否改變?若不改變,請(qǐng)求出此定值,若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,若線段上的個(gè)點(diǎn)把這條線段分制為兩部分,其中較長的一部分與全長之比等于時(shí),則這個(gè)點(diǎn)稱為黃金分割點(diǎn)。類比三角形中線的定義,我們規(guī)定:連接三角形的一個(gè)頂點(diǎn)和它對(duì)邊的黃金分割點(diǎn)的線段叫做該三角形的黃金分割線.

(1)如圖1,CD是△ABC的黃金分割線(AD> BD),△ABC的面積為4,求△ACD的面積 ;

(2)如圖2,在△ABC,A= 36°,AB=AC=1,過點(diǎn)BBD平分∠ABC,與AC相交于點(diǎn)D,求證: BD是△ABC的黃金分割線.

(3)如圖3,BE、CD是△ABC的黃金分割線(AD> BD,AE> CE),BE、CD相交于點(diǎn)O.

①設(shè)△BOD與△COE的面積分別為S1S2 ,請(qǐng)猜想S1、S2之間的數(shù)量關(guān)系,并說明理由;

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時(shí),雙翼邊緣的端點(diǎn)AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ30°.當(dāng)雙翼收起時(shí),可以通過閘機(jī)的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,P是AB延長線上一點(diǎn),PC與O相切于點(diǎn)C,CDAB于點(diǎn)D,過B點(diǎn)作AP的垂線交PC于點(diǎn)F.

(1)求證:E是CD的中點(diǎn);

(2)若FB=FE=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政部門為了保護(hù)生態(tài)環(huán)境,計(jì)劃購買A,B兩種型號(hào)的環(huán)保設(shè)備.已知購買一套A型設(shè)備和三套B型設(shè)備共需230萬元,購買三套A型設(shè)備和兩套B型設(shè)備共需340萬元.

1)求A型設(shè)備和B型設(shè)備的單價(jià)各是多少萬元;

2)根據(jù)需要市政部門采購A型和B型設(shè)備共50套,預(yù)算資金不超過3000萬元,問最多可購買A型設(shè)備多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O∠BAD=90°,CCEAD垂足為E∠EDC=∠BDC.

1)求證:CEO的切線;

2)若DE+CE=4,AB=6,BD的值

查看答案和解析>>

同步練習(xí)冊(cè)答案