【題目】如圖,已知平行于y軸的動直線a的表達式為x=t,直線b的表達式為y=x,直線c的表達式為y=x+2,且動直線a分別交直線b、c于點D、EED的上方),Py軸上一個動點,且滿足PDE是等腰直角三角形,則點P的坐標是________

【答案】 , ,

【解析】解:x=t時,y=x=t;當x=t時,y=x+2=t+2,E點坐標為(t,t+2),D點坐標為(tt).

ED的上方,DE=t+2t=t+2,且t

∵△PDE為等腰直角三角形,PE=DEPD=DEPE=PD

t0時,PE=DE時,﹣t+2=t,t=t+2=P點坐標為(0, ).

t0PD=DE時,﹣t+2=t,t=P點坐標為(0, );

t0PE=PD時,即DE為斜邊,∴﹣ t+2=2tt=,DE的中點坐標為(t t+1),P點坐標為(0 );

t0PE=DEPD=DE時,由已知得DE=t, t+2=t,t=40(不符合題意,舍去),此時直線x=t不存在;

t0,PE=PD時,即DE為斜邊,由已知得DE=2t, t+2=2tt=4, t+1=0,P點坐標為(0,0).

綜上所述: P點坐標為(0, )或(0, 0 0,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,OAC上一動點,過點O作直線MNBC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.若點O運動到AC的中點,則∠ACB=_____°時,四邊形AECF是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=3,BC=4,點DAB的中點,點EDC的延長線上,且CE=CD,過點BBFDEAE的延長線于點F,交AC的延長線于點G

1)求證:AB=BG

2)若點P是直線BG上的一點,試確定點P的位置,使BCPBCD相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,ACBDCE均為等邊三角形,當DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE.

填空:① AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______

(2)拓展研究:

如圖2,ACBDCE均為等腰三角形,且∠ACB=DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.

(3)探究發(fā)現(xiàn):

1中的ACBDCE,在DCE旋轉(zhuǎn)過程中當點A,D,E不在同一直線上時,設(shè)直線ADBE相交于點O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說明理由.

【答案】160°AD=BE;(2AB=17;(3AOE的度數(shù)是60°120°

【解析】試題分析:1)由條件易證ACD≌△BCE,從而得到:AD=BE,ADC=BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).

2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由DCE為等腰直角三角形及CMDCEDE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE

3)由(1)知ACD≌△BCE,得∠CAD=CBE,由∠CAB=ABC=60°,可知∠EAB+ABE=120°,根據(jù)三角形的內(nèi)角和定理可知∠AOE=60°

試題解析:1ACBDCE均為等邊三角形,

CA=CB,CD=CEACB=DCE=60°.

∴∠ACD=BCE.

ACDBCE中,

,

ACDBCE(SAS).

∴∠ADC=BEC.

DCE為等邊三角形,

∴∠CDE=CED=60°.

∵點A,DE在同一直線上,

∴∠ADC=120°.

∴∠BEC=120°.

∴∠AEB=BECCED=60°.

故答案為:60°.

②∵ACDBCE,

AD=BE.

故答案為:AD=BE.

2ACBDCE均為等腰直角三角形,

CA=CB,CD=CEACB=DCE=90°.

∴∠ACD=BCE.

ACDBCE中,

ACDBCE(SAS).

AD=BE=AE-DE=8,ADC=BEC,

DCE為等腰直角三角形,

∴∠CDE=CED=45°.

∵點A,D,E在同一直線上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=BECCED=90°.

AB==17;

31ACDBCE,

∴∠CAD=CBE,

∵∠CAB=CBA=60°,

∴∠OAB+OBA=120°

∴∠AOE=180°120°=60°,

同理求得∠AOB=60°,

∴∠AOE=120°

∴∠AOE的度數(shù)是60°120°.

點睛:本題考查了等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形全等的判定與性質(zhì)等知識,考查了運用已有的知識和經(jīng)驗解決問題的能力.

型】解答
結(jié)束】
26

【題目】如圖,直線MNy=-xbx軸交于點M4,0),與y軸交于點N,長方形ABCD的邊ABx軸上,AB2,AD1.長方形ABCD由點A與點O重合的位置開始,以每秒1個單位長度的速度沿x軸正方向作勻速直線運動,當點A與點M重合時停止運動.設(shè)長方形運動的時間為t秒,長方形ABCD與△OMN重合部分的面積為S

1)求直線MN的解析式;

2)當t1時,請判斷點C是否在直線MN上,并說明理由;

3)請求出當t為何值時,點D在直線MN上;

4)直接寫出在整個運動過程中St的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC會平行嗎?說明理由

(2)ADBC的位置關(guān)系如何?為什么?

(3)BC平分∠DBE?為什么

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個橫坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2), (2,2)···根據(jù)這個規(guī)律,第140個點的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣2,﹣1,0,1,3,4這七個數(shù)中隨機抽取一個數(shù)記為a,a的值既是不等式組 的解,又在函數(shù)y= 的自變量取值范圍內(nèi)的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, △ABC的三個頂點的位置如圖所示,點A'的坐標是

(-2,2, 現(xiàn)將ABC平移,使點A變換為點A',B、C分別是B、C的對應(yīng)點。

1)請畫出平移后的像A'B'C'(不寫畫法) ,并直接寫出點B、C的坐標:

B ( ) 、C ( ) ;

2)若ABC 內(nèi)部一點P的坐標為(a,b),則點P   的對應(yīng)點P 的坐標是 ( ) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費辦法.若某戶居民每月應(yīng)交電費y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖所示),根據(jù)圖象解下列問題:

(1) 分別寫出當0≤x≤100和x>100時,yx的函數(shù)關(guān)系式

(2) 利用函數(shù)關(guān)系式,說明電力公司采取的收費標準

(3) 若該用戶某月用電62度,則應(yīng)繳費多少元?若該用戶某月繳費105元時,則該用戶該月用了多少度電?

查看答案和解析>>

同步練習冊答案