已知拋物線y=ax2+bx+3交x軸于點(diǎn)A(x1,0)、B(-1,0)且x1>0,AO2+BO2=10,拋物線交y軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)證明△ADC是直角三角形;
(3)第一象限內(nèi),在拋物線上是否存在一點(diǎn)E,使∠ECO=∠ACB?若存在,求出點(diǎn)E的坐標(biāo).
(1)∵拋物線y=ax2+bx+3交x軸于點(diǎn)A(x1,0)、B(-1,0)
∴AO2+(-1)2=10,
∴AO2=9,
∴AO=±3,∴A(3,0)
把A(3,0)、B(-1,0)代入y=ax2+bx+3得:
9a+3b+3=0
a-b+3=0

解得:
a=-1
b=2
,
∴拋物線的解析式:y=-x2+2x+3;

(2)證明:∵拋物線的解析式:
y=-x2+2x+3=-(x-1)2+4,
∴頂點(diǎn)D(1,4)
由(1)得:∴AC2=32+32=18,
CD2=2,AD2=20,
∴AD2=CD2+AC2
∴△ADC是直角三角形.

(3)過(guò)A作AG⊥AC交CE于G,過(guò)G作GH⊥x軸于H,
∵∠ECO=∠ACB,∴∠ECA=∠BCO,
∵∠COB=∠CAG,
∴Rt△BOCRt△GAC,
OB
AG
=
OC
AC
,
1
AG
=
3
3
2
,
AG=
2

由OC=OA,GH⊥x軸,
∴AH=GH,∴AH2+GH2=AG2
得AH=GH=1,
∴G點(diǎn)坐標(biāo)為(4,1),
將C(0,3),G(4,1)代入y=kx+c得:
c=3
4k+c=1
,
解得:
k=-
1
2
c=3

∴直線CG的解析式為:y=-
1
2
x+3

聯(lián)立:y=-
1
2
x+3
與y=-x2+2x+3,
-
1
2
x+3=-x2+2x+3,
解得:x1=
5
2
,x2=0(與A點(diǎn)重合舍去),
x=
5
2
時(shí),y=
7
4
,
∴E(
5
2
,
7
4
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,2),此拋物線的對(duì)稱(chēng)軸為直線x=2,點(diǎn)A的坐標(biāo)為(1,0).
(1)求B點(diǎn)坐標(biāo)以及△ABC的面積;
(2)求拋物線的解析式;
(3)過(guò)點(diǎn)C作x軸的平行線交此拋物線的對(duì)稱(chēng)軸于點(diǎn)D,你能判斷四邊形ABDC是什么四邊形嗎?并證明你的結(jié)論;
(4)若一個(gè)動(dòng)點(diǎn)P自O(shè)C的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對(duì)稱(chēng)軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動(dòng)到點(diǎn)C,求使點(diǎn)P運(yùn)動(dòng)的總路徑(ME+EF+FC)最短的點(diǎn)E、F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2-
1
3
x+2
與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).
(1)求a的值和拋物線的頂點(diǎn)坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點(diǎn)M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),d=|AN-CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請(qǐng)簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC,BC,過(guò)A,B,C三點(diǎn)作拋物線.
(1)求拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
第三問(wèn)改成,在(2)的條件下,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PCD的面積是△BCD面積的三分之一,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=(k-1)x2+2kx+k-2與x軸有兩個(gè)不同的交點(diǎn).
(1)求k的取值范圍;
(2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時(shí),求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫(huà)出一個(gè)最大的正方形,使得正方形的一邊在x軸上,其對(duì)邊的兩個(gè)端點(diǎn)在拋物線上,試求出這個(gè)最大正方形的邊長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某科研所投資200萬(wàn)元,成功地研制出一種市場(chǎng)需求量較大的汽配零件,并投入資金700萬(wàn)元進(jìn)行批量生產(chǎn).已知每個(gè)零件成本20元.通過(guò)市場(chǎng)銷(xiāo)售調(diào)查發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)定為50元時(shí),年銷(xiāo)售量為20萬(wàn)件;銷(xiāo)售單價(jià)每增加1元,年銷(xiāo)售量將減少1000件.設(shè)銷(xiāo)售單價(jià)為x元,年銷(xiāo)售量為y(萬(wàn)件),年獲利為z(萬(wàn)元)
(1)試寫(xiě)出y與x之間的函數(shù)關(guān)系式(不必寫(xiě)出x的取值范圍)
(2)試寫(xiě)出z與x之間的函數(shù)關(guān)系式(不必寫(xiě)出x的取值范圍)
(3)當(dāng)銷(xiāo)售單價(jià)定為多少時(shí),年獲利最多?并求出這個(gè)年利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

春節(jié)期間某水庫(kù)養(yǎng)殖場(chǎng)為適應(yīng)市場(chǎng)需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對(duì)水庫(kù)中某種鮮魚(yú)進(jìn)行捕撈、銷(xiāo)售.九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天(1≤x≤20且x為整數(shù))的捕撈與銷(xiāo)售的相關(guān)信息如表:
鮮魚(yú)銷(xiāo)售單價(jià)(元/kg)20
單位捕撈成本(元/kg)5-
x
5
捕撈量(kg)950-10x
(1)在此期間該養(yǎng)殖場(chǎng)每天的捕撈量與前一天末的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場(chǎng)每天捕撈和銷(xiāo)售的鮮魚(yú)沒(méi)有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入=日銷(xiāo)售額-日捕撈成本)
(3)試說(shuō)明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

崇啟大橋使啟東市融入了上海一小時(shí)經(jīng)濟(jì)區(qū),為啟東經(jīng)濟(jì)的騰飛打下了堅(jiān)實(shí)的基礎(chǔ),建成的大橋?qū)⑹鞘澜缟献铋L(zhǎng)的斜拉索大橋,如圖,橋梁的兩條鋼纜具有相同的拋物線形狀,建立如圖所示的直角坐標(biāo)系,左邊的一條拋物線可以用y=0.0225x2+0.9x+10表示,而且左右兩條拋物線關(guān)于y軸對(duì)稱(chēng).
(1)鋼纜最低點(diǎn)到橋面的距離是多少?
(2)兩條鋼纜的最低點(diǎn)之間的距離是多少?
(3)寫(xiě)出右邊鋼纜的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

飛機(jī)著陸后滑行的距離s(單位:米)與滑行的時(shí)間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t-1.5t2.飛機(jī)著陸后滑行______秒才能停下來(lái).

查看答案和解析>>

同步練習(xí)冊(cè)答案