【題目】某機(jī)動(dòng)車出發(fā)前油箱內(nèi)有油,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升.油箱中余油量()與行駛時(shí)間()之間的函數(shù)關(guān)系如圖所示,根據(jù)圖回答問題:
(1)機(jī)動(dòng)車行駛后加油,途中加油 升:
(2)根據(jù)圖形計(jì)算,機(jī)動(dòng)車在加油前的行駛中每小時(shí)耗油多少升?
(3)如果加油站距目的地還有,車速為,要到達(dá)目的地,油箱中的油是否夠用?請(qǐng)說明理由.
【答案】(1)24;(2)每小時(shí)耗油量為6L;(3)油箱中的油不夠用,理由見解析
【解析】
(1)圖象上x=5時(shí),對(duì)應(yīng)著兩個(gè)點(diǎn),油量一多一少,可知此時(shí)加油多少;
(2)因?yàn)?/span>x=0時(shí),Q=42,x=5時(shí),Q=12,所以出發(fā)前油箱內(nèi)余油量42L,行駛5h后余油量為12L,共用去30L,因此每小時(shí)耗油量為6L;
(3)由圖象知,加油后還可行駛6小時(shí),即可行駛60×6千米,然后同400千米做比較,即可求出答案.
解:(1)由圖可得,機(jī)動(dòng)車行駛5小時(shí)后加油為3612=24;
故答案為:24;
(2)∵出發(fā)前油箱內(nèi)余油量42L,行駛5h后余油量為12L,共用去30L,
因此每小時(shí)耗油量為6L,
(3)由圖可知,加油后可行駛6h,
故加油后行駛60×6=360km,
∵400>360,
∴油箱中的油不夠用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)Q.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;
(2)點(diǎn)P是拋物線的對(duì)稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司的甲.乙兩輛貨車分別從A.B兩地同時(shí)相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達(dá)C地,并在C地用1小時(shí)配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,如圖是甲.乙兩車間的距離(千米)與乙車出發(fā)(時(shí))的函數(shù)圖像
(1)A.B兩地的距離是_____千米;
(2)甲車出發(fā)______小時(shí)到達(dá)C地;
(3)坐標(biāo)系中a的值為________千米;
(4)乙車出發(fā)多長(zhǎng)時(shí)間,兩車相距150千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊的其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
(初步思考)
我們不妨將問題用符號(hào)語言表示為:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
(深入探究)
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)______,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角.求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角.請(qǐng)你用直尺在圖③中作出△DEF,使△DEF和△ABC不全等,并作簡(jiǎn)要說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC
⑴求∠ECD的度數(shù);
⑵若CE=5,求CB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6cm,BC=12cm.. 點(diǎn)M從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/秒的速度向B點(diǎn)移動(dòng),點(diǎn)N從點(diǎn)B開始沿BC邊以2cm/秒的速度向點(diǎn)C移動(dòng). 若M, N分別從A, B點(diǎn)同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t (0<t<6),△DMN的面積為S.
(1) 求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;
(2) 當(dāng)△DMN為直角三角形時(shí),求△DMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)商的經(jīng)適房的三個(gè)居民小區(qū)A、B、C在同一條直線上,位置如圖所示.其中小區(qū)B到小區(qū)A、C的距離分別是70m和150m,現(xiàn)在想在小區(qū)A、C之間建立一個(gè)超市,要求各小區(qū)居民到超市總路程的和最小,那么超市的位置應(yīng)建在( 。
A.小區(qū)AB.小區(qū)BC.小區(qū)CD.AC的中點(diǎn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com