【題目】如圖,在平行四邊形中,點上任意一點,過點于點,連接并延長交的延長線于點,則下列結(jié)論中錯誤的是(

A.B.C.D.

【答案】C

【解析】

根據(jù)平行四邊形的性質(zhì)可得出AD=EF=BC、AE=DF、BE=CF,然后根據(jù)相似三角形的對應(yīng)邊成比例一一判斷即可.

∵四邊形ABCD為平行四邊形,EFBC

AD=EF=BC,AE=DF,BE=CF

A.∵ADCK,

∴△ADF∽△KCF

,

,即,故結(jié)論A正確;

B.∵ADCK,

∴△ADF∽△KCF,

,

,故結(jié)論B正確;

C.∵ADCK,

∴△ADF∽△KCF

,

,即,故結(jié)論C錯誤;

D.∵ABCD是平行四邊形,

∴∠B=D

ADBK,

∴∠DAF=K

∴△ADF∽△KBA,

,即,故結(jié)論D正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應(yīng)點分別為,記旋轉(zhuǎn)角為

(1)如圖①,當(dāng)時,求點的坐標(biāo);

(2)如圖②,當(dāng)點落在的延長線上時,求點的坐標(biāo);

(3)當(dāng)點落在線段上時,求點的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個方程為鳳凰方程.已知是鳳凰方程,且有兩個相等的實數(shù)根,則下列正確的是( 。

A.a=cB.a=bC.b=cD.a=b=c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列代數(shù)式:abac,a+b+c,a-b+c, 2a+b2a-b中,其值為正的代數(shù)式的個數(shù)為(

A.2B.3C.4D.4個以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某倉儲中心有一個坡度為i12的斜坡AB,頂部A處的高AC4米,B、C在同一水平地面上,其橫截面如圖.

1)求該斜坡的坡面AB的長度;

2)現(xiàn)有一個側(cè)面圖為矩形DEFG的長方體貨柜,其中長DE2.5米,高EF2米,該貨柜沿斜坡向下時,點DBC所在水平面的高度不斷變化,求當(dāng)BF3.5米時,點DBC所在水平面的高度DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸交于點,與反比例函數(shù)的圖象交于兩點,的面積為.

1)求一次函數(shù)的解析式;

2)求點坐標(biāo)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1RtABC中,∠ACB90°,點DAB邊上的動點(點D不與點A,點B重合),過點DEDCD交直線AC于點E,已知∠A30°AB4cm,在點D由點A到點B運動的過程中,設(shè)ADxcm,AEycm

1)通過取點、畫圖、測量,得到了xy的幾組值,如表:

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:(說明:補全表格時相關(guān)數(shù)值,保留一位小數(shù))

2)在如圖2的平面直角坐標(biāo)系xOy中,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AEAD時,AD的長度約為  cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的兩條邊AB1AD,以B為旋轉(zhuǎn)中心,將對角線BD順時針旋轉(zhuǎn)60°得到線段BE,再以C為圓心將線段CD順時針旋轉(zhuǎn)90°得到線段CF,連接EF,則圖中陰影部分面積為_____

查看答案和解析>>

同步練習(xí)冊答案