【題目】用適當(dāng)方法解下列方程:
(1)x2+4x+4=9
(2)3x(2x+1)=4x+2.
(3)3(x﹣1)2=x(x﹣1)
(4)3x2﹣6x﹣2=0.
【答案】(1)x1=1,x2=﹣5;(2)x1=﹣,x2=;(3)x1=1,x2=;(4)x1=1+,x2=1﹣.
【解析】
(1)將方程左邊變形為(x+2)2再用直接開平方法;
(2)移項后,提取公因式(2x+1),即可得到(2x+1)(3x﹣2)=0,再解兩個一元一次方程即可;(3)移項后,提取公因式(x﹣1),即可得到(x﹣1)(2x﹣3)=0,再解兩個一元一次方程即可;
(4)把方程左邊加上一次項系數(shù)一半的平方,利用配方法解方程即可;
(1)x2+4x+4=9,(x+2)2=9,(x+2)=±3,∴x1=1,x2=﹣5;
(2)3x(2x+1)=4x+2.
3x(2x+1)﹣2(2x+1)=0.
(2x+1)(3x﹣2)=0,∴2x+1=0或3x﹣2=0,∴x1=﹣,x2=;
(3)3(x﹣1)2=x(x﹣1)
3(x﹣1)2﹣x(x﹣1)=0,(x﹣1)[3(x﹣1)﹣x]=0,即(x﹣1)(2x﹣3)=0,∴x﹣1=0或2x﹣3=0,∴x1=1,x2=;
(4)3x2﹣6x﹣2=0.
x2﹣2x=,x2﹣2x+1=+1,(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D在△ABC的邊AB上,且AD=CD,
(1)用直尺和圓規(guī)作∠BDC的平分線DE,交BC于點(diǎn)E(不寫作法,保留作圖痕跡);
(2)在(1)的條件下,判斷DE與AC的位置關(guān)系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地在城區(qū)美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算,獲得以下信息:
信息1:乙隊單獨(dú)完成這項工程需要60天;
信息2:若先由甲、乙兩隊合做16天,剩下的工程再由乙隊單獨(dú)做20天可以完成;
信息3:甲隊施工一天需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.
根據(jù)以上信息,解答下列問題:
(1)甲隊單獨(dú)完成這項工程需要多少天?
(2)若該工程計劃在50天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨(dú)完成該工程省錢?還是由甲、乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在畫有方格圖的平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)均在格點(diǎn)上.
(1)將△ACB繞點(diǎn)B順時針方向旋轉(zhuǎn),在方格圖中用直尺畫出旋轉(zhuǎn)后對應(yīng)的△A1C1B,則A1點(diǎn)的坐標(biāo)是(_________),C1點(diǎn)的坐標(biāo)是(_________).
(2)在方格圖中用直尺畫出△ACB關(guān)于原點(diǎn)O的中心對稱圖形△A2C2B2,則A2點(diǎn)的坐標(biāo)是(_________),C2點(diǎn)的坐標(biāo)是(_________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要設(shè)計一個等腰梯形的花壇,花壇上底米,下底米,上下底相距米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為米.
用含的式子表示橫向甬道的面積;
當(dāng)三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
根據(jù)設(shè)計的要求,甬道的寬不能超過米.如果修建甬道的總費(fèi)用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是,花壇其余部分的綠化費(fèi)用為每平方米萬元,那么當(dāng)甬道的寬度為多少米時,所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與證明:
(1)如圖①,直線經(jīng)過正三角形的頂點(diǎn),在直線上取點(diǎn),,使得,.通過觀察或測量,猜想線段,與之間滿足的數(shù)量關(guān)系,并予以證明;
(2)將(1)中的直線繞著點(diǎn)逆時針方向旋轉(zhuǎn)一個角度到如圖②的位置,,.通過觀察或測量,猜想線段,與之間滿足的數(shù)量關(guān)系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對稱軸;
(3)在所給坐標(biāo)系中畫出二次函數(shù)y=x2+bx+c的圖象.
(4)寫出當(dāng)y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)點(diǎn),,且滿足,點(diǎn)在直線的左側(cè),且.
(1)求的值;
(2)若點(diǎn)在軸上,求點(diǎn)的坐標(biāo);
(3)若為直角三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com