【題目】如圖,斜坡AB的坡度為1:2.4,長度為26m,在坡頂B所在的平臺上有一座電視塔CD,已知在A處測得塔頂D的仰角為45°,在B處測得塔頂D的仰角為73°,求電視塔CD的高度. (參考數(shù)值:sin73°≈ ,cos73°≈0. ,tan73°≈ )
【答案】電視塔CD的高度為20m
【解析】
延長DC 交AM于F,作BE⊥AM于E.首先證明四邊形BCEF是矩形,由題意BE:AE=1:2.4,在Rt△ABE中,根據(jù)AB=26,由勾股定理可得BE=10,AE=24,在Rt△BCD中,可知tan73°=,推出,推出DC=BC,在Rt△AFD中,由∠DAF=45°,可知AF=DF,可得24+BC=10+BC,解方程求出BC即可解決問題.
解:延長DC 交AM于F,作BE⊥AM于E.
∵DF⊥BC,DF⊥AM,
∴∠AEB=∠AFD=∠DCB=∠BCF=90°,
∴四邊形BCEF是矩形,
∴BC=EF,BE=CF,
由題意BE:AE=1:2.4,
在Rt△ABE中,∵AB=26,
由勾股定理可得BE=10,AE=24,
在Rt△BCD中,∵∠DBC=73°,
∴tan73°=,
∴ ,
∴DC= BC,
在Rt△AFD中,∵∠DAF=45°,
∴AF=DF,
∴24+BC=10+ BC,
∴BC=6,DC=20,
答:電視塔CD的高度為20m
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線 (x>0)經(jīng)過矩形OABC的邊AB、BC上的點F、E,其中CE= CB,AF= AB,且四邊形OEBF的面積為2,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,CB=8,AD是△ABC的角平分線,過A、C、D三點的圓與斜邊AB交于點E,連接DE。
(1)求證:AC=AE;
(2)求△ACD外接圓的直徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC 內(nèi)接于⊙O,P 是上任一點(點 P 不與點 A、B 重合),連 AP、BP,過點 C 作 CM∥BP 交 PA 的延長線于點 M.
(1)填空:∠APC= 度,∠BPC= 度;
(2)求證:△ACM≌△BCP;
(3)若 PA=1,PB=2,求梯形 PBCM 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圓O中,弦AB⊥CD于E,弦AG⊥BC于F,CD與AG相交于點M.
(1)求證:弧BD=弧BG.
(2)如果AB=12,CM=4,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A,B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當MC+MA的值最小時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,斜邊AB的長為2,O為AB的中點,P為AC邊上的動點,OQ⊥OP交BC于點Q,M為PQ的中點,當點P從點A運動到點C時,點M所經(jīng)過的路線長為( )
A. B. C. 1 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②a﹣b+c<0;③4a+b+c=0;④拋物線的頂點坐標為(2,b);⑤當x<1時,y隨x增大而增大.其中結(jié)論正確的是( )
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC,∠B=90°,點P由A開始沿AB向B運動,速度是1cm/s,點Q由B開始沿BC向C運動,速度是2cm/s,如果P、Q同時出發(fā),經(jīng)過多長時間△PBQ的面積等于7cm2,請列出方程估計解的大致范圍(誤差不超過0.01s).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com