【題目】拋物線yx2+bx+3的對(duì)稱軸為直線x1.若關(guān)于x的一元二次方程x2+bx+3t0t為實(shí)數(shù))在﹣2x3的范圍內(nèi)有實(shí)數(shù)根,則t的取值范圍是( 。

A.12<t3B.12<t4C.12<t4D.12<t3

【答案】C

【解析】

根據(jù)給出的對(duì)稱軸求出函數(shù)解析式為y=-x22x3,將一元二次方程-x2bx3t0的實(shí)數(shù)根看做是y=-x22x3與函數(shù)yt的交點(diǎn),再由﹣2x3確定y的取值范圍即可求解.

解:∵y=-x2bx3的對(duì)稱軸為直線x=-1

b2

y=-x22x3,

∴一元二次方程-x2bx3t0的實(shí)數(shù)根可以看做是y=-x22x3與函數(shù)yt的交點(diǎn),

∵當(dāng)x1時(shí),y4;當(dāng)x3時(shí),y=-12

∴函數(shù)y=-x22x3在﹣2x3的范圍內(nèi)-12y≤4

∴-12t≤4

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在反比例函數(shù)的圖象上,過點(diǎn)Dx軸的平行線交y軸于點(diǎn)B0,2),過點(diǎn)A(,0)的直線ykx+by軸于點(diǎn)C,且BD2OCtanOAC

1)求反比例函數(shù)的解析式;

2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;

3)點(diǎn)Ex軸上點(diǎn)A左側(cè)的一點(diǎn),且AEBD,連接BE交直線CA于點(diǎn)M,求tanBMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,于點(diǎn)于點(diǎn),連接并延長交于點(diǎn),交的延長線于點(diǎn),連接,若,,則__________,_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與交于點(diǎn),與軸交于點(diǎn),軸于點(diǎn),且

1)求一次函數(shù)、反比例函數(shù)的解析式;

2)根據(jù)圖像直接寫出的取值范圍;

3)點(diǎn)為反比例函數(shù)圖象上使得四邊形為菱形的一點(diǎn),點(diǎn)軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019325日是全國中小學(xué)生安全教育日,前進(jìn)中學(xué)為加強(qiáng)學(xué)生的安全意識(shí),組全校學(xué)生參加安全知識(shí)競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100),各等級(jí)進(jìn)行統(tǒng)計(jì)(級(jí).-分;級(jí).分;級(jí).分;級(jí).分;級(jí).),并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:

1_______

2)補(bǔ)全頻數(shù)分布直方圖;

3)該校共有名學(xué)生.若成績?cè)?/span>分以下()的學(xué)生安全意識(shí)不強(qiáng),有待進(jìn).步加強(qiáng)安全教育,則該校安全意識(shí)不強(qiáng)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)、同時(shí)從點(diǎn)出發(fā),以的速度分別沿勻速運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.過點(diǎn)的垂線于點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱.

1)當(dāng)_____時(shí),點(diǎn)的平分線上;

2)當(dāng)_____時(shí),點(diǎn)邊上;

3)設(shè)重合部分的面積為,求之間的函數(shù)關(guān)系式,并寫的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ykx+b經(jīng)過點(diǎn)A0,2),B(﹣40)和拋物線yx2

1)求直線的解析式;

2)將拋物線yx2沿著x軸向右平移,平移后的拋物線對(duì)稱軸左側(cè)部分與y軸交于點(diǎn)C,對(duì)稱軸右側(cè)部分拋物線與直線ykx+b交于點(diǎn)D,連接CD,當(dāng)CDx軸時(shí),求平移后得到的拋物線的解析式;

3)在(2)的條件下,平移后得到的拋物線的對(duì)稱軸與x軸交于點(diǎn)EP為該拋物線上一動(dòng)點(diǎn),過點(diǎn)P作拋物線對(duì)稱軸的垂線,垂足為Q,是否存在這樣的點(diǎn)P,使以點(diǎn)E,PQ為頂點(diǎn)的三角形與AOB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與反比例函數(shù)yx0)的圖象相交于點(diǎn)D,點(diǎn)A為直線yx上一點(diǎn),過點(diǎn)AACx軸于點(diǎn)C,交反比例函數(shù)yx0)的圖象于點(diǎn)B,連接BD

1)若點(diǎn)B的坐標(biāo)為(82),則k   ,點(diǎn)D的坐標(biāo)為   

2)若AB2BC,且△OAC的面積為18,求k的值及△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)數(shù)學(xué)理解:如圖①,是等腰直角三角形,過斜邊的中點(diǎn)作正方形,分別交,于點(diǎn),,求證:

2)問題解決:如圖②,在任意直角內(nèi),找一點(diǎn),過點(diǎn)作正方形,分別交,于點(diǎn),若,求的度數(shù);

3)聯(lián)系拓廣;如圖③,在(2)的條件下,分別延長,,交于點(diǎn),,若,求的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案