【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱(chēng),再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱(chēng),如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是( 。

A.(4n﹣1,
B.(2n﹣1,
C.(4n+1,
D.(2n+1,

【答案】C
【解析】∵△OA1B1是邊長(zhǎng)為2的等邊三角形,∴A1的坐標(biāo)為(1,),B1的坐標(biāo)為(2,0),∵△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱(chēng),∴點(diǎn)A2與點(diǎn)A1關(guān)于點(diǎn)B1成中心對(duì)稱(chēng),∵2×2﹣1=3,2×0﹣=﹣,∴點(diǎn)A2的坐標(biāo)是(3,﹣),∵△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱(chēng),∴點(diǎn)A3與點(diǎn)A2關(guān)于點(diǎn)B2成中心對(duì)稱(chēng),∵2×4﹣3=5,2×0﹣(﹣)=,∴點(diǎn)A3的坐標(biāo)是(5,),∵△B3A4B4與△B3A3B2關(guān)于點(diǎn)B3成中心對(duì)稱(chēng),∴點(diǎn)A4與點(diǎn)A3關(guān)于點(diǎn)B3成中心對(duì)稱(chēng),∵2×6﹣5=7,2×0﹣=﹣,∴點(diǎn)A4的坐標(biāo)是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…∴An的橫坐標(biāo)是2n﹣1,A2n+1的橫坐標(biāo)是2(2n+1)﹣1=4n+1,∵當(dāng)n為奇數(shù)時(shí),An的縱坐標(biāo)是,當(dāng)n為偶數(shù)時(shí),An的縱坐標(biāo)是﹣,∴頂點(diǎn)A2n+1的縱坐標(biāo)是,∴△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是(4n+1,).故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠通過(guò)科技創(chuàng)新,生產(chǎn)效率不斷提高.已知去年月平均生產(chǎn)量為120臺(tái)機(jī)器,今年一月份的生產(chǎn)量比去年月平均生產(chǎn)量增長(zhǎng)了m%,二月份的生產(chǎn)量又比一月份生產(chǎn)量多50臺(tái)機(jī)器,而且二月份生產(chǎn)60臺(tái)機(jī)器所需要時(shí)間與一月份生產(chǎn)45臺(tái)機(jī)器所需時(shí)間相同,三月份的生產(chǎn)量恰好是去年月平均生產(chǎn)量的2倍.
問(wèn):今年第一季度生產(chǎn)總量是多少臺(tái)機(jī)器?m的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OMTN中,OM=ON,TM=TN,我們把這種兩組鄰邊分別相等的四邊形叫做箏形.

(1)試探究箏形對(duì)角線之間的位置關(guān)系,并證明你的結(jié)論;
(2)在箏形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC為對(duì)角線,BD=8,
①是否存在一個(gè)圓使得A,B,C,D四個(gè)點(diǎn)都在這個(gè)圓上?若存在,求出圓的半徑;若不存在,請(qǐng)說(shuō)明理由;
②過(guò)點(diǎn)B作BF⊥CD,垂足為F,BF交AC于點(diǎn)E,連接DE,當(dāng)四邊形ABED為菱形時(shí),求點(diǎn)F到AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形OA1B1C1、A1A2B2C2、A2A3B3C3 , 按如圖放置,其中點(diǎn)A1、A2、A3在x軸的正半軸上,點(diǎn)B1、B2、B3在直線y=﹣x+2上,則點(diǎn)A3的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知(b、c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),點(diǎn)C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.

(1)如圖,若拋物線經(jīng)過(guò)A、B兩點(diǎn),求拋物線的解析式.
(2)平移1中的拋物線,使頂點(diǎn)P在直線AC上并沿AC方向滑動(dòng)距離為時(shí),試證明:平移后的拋物線與直線AC交于x軸上的同一點(diǎn).
(3)在2的情況下,若沿AC方向任意滑動(dòng)時(shí),設(shè)拋物線與直線AC的另一交點(diǎn)為Q,取BC的中點(diǎn)N,試探究NP+BQ是否存在最小值?若存在,求出該最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+mx+m﹣1=0有兩個(gè)相等的實(shí)數(shù)根.
(1)求m的值;
(2)解原方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),連接EF,則的△AEF的面積是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱(chēng)軸與x軸相交于點(diǎn)M.

(1)求拋物線的解析式和對(duì)稱(chēng)軸;
(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為開(kāi)展“爭(zhēng)當(dāng)書(shū)香少年”活動(dòng),小石對(duì)本校部分同學(xué)進(jìn)行“最喜歡的圖書(shū)類(lèi)別”的問(wèn)卷調(diào)查,結(jié)果統(tǒng)計(jì)后,繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
(1)此次被調(diào)查的學(xué)生共 
(2)補(bǔ)全條形統(tǒng)計(jì)圖
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類(lèi)部分所對(duì)應(yīng)的圓心角為
(4)若該校有1200名學(xué)生,估計(jì)全校最喜歡“文史類(lèi)”圖書(shū)的學(xué)生有

查看答案和解析>>

同步練習(xí)冊(cè)答案