【題目】如圖,⊙O的半徑OA⊥弦BC于H,D是⊙O上另一點(diǎn),AD與BC相交于點(diǎn)E,若DC=DE,OB=,AB=5.
(1)求證:∠AOB=2∠ADC.
(2)求AE長(zhǎng).
【答案】(1)詳見解析;(2)AE=
【解析】
(1)根據(jù)垂徑定理可得,可得∠AOC=∠AOB,根據(jù)圓周角定理可得∠AOB=2∠ADC;
(2)由題意可證AB=BE=5,根據(jù)勾股定理可求AH=3,即可求EH的長(zhǎng),根據(jù)勾股定理可得AE的長(zhǎng).
證明:(1)如圖,連接OC,
∵OA⊥BC,
∴,
∴∠AOC=∠AOB,
∵∠AOC=2∠ADC,
∴∠AOB=2∠ADC
(2)∵DC=DE
∴∠DCE=∠DEC
∵∠DCE=∠DAB,∠DEC=∠AEB,
∴∠AEB=∠DAB,
∴AB=BE=5
∵AH2+BH2=AB2,OH2+BH2=OB2,
∴AB2﹣AH2=BH2=OB2﹣(AO﹣AH)2,
∴,
∴AH=3,
∴BH=4,
∴EH=BE﹣BH=1,
∴AE==
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給網(wǎng)格圖(每小格均為邊長(zhǎng)是1的正方形)中完成下列各題:
(1)圖形ABCD與圖形A1B1C1D1關(guān)于直線MN成軸對(duì)稱,請(qǐng)?jiān)趫D中畫出對(duì)稱軸并標(biāo)注上相應(yīng)字母M、N;
(2)以圖中O點(diǎn)為位似中心,將圖形ABCD放大,得到放大后的圖形A2B2C2D2,則圖形ABCD與圖形A2B2C2D2的對(duì)應(yīng)邊的比是多少(注:只要寫出對(duì)應(yīng)邊的比即可);
(3)求圖形A2B2C2D2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=ax2+bx,其對(duì)稱軸與兩段拋物線所圍成的陰影部分的面積為,則a、b的值分別為( 。
A. , B. ,﹣ C. ,﹣ D. ﹣,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.《九章算術(shù)》中記
載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個(gè)圓柱截面示意圖(如圖②),其中BO⊥CD于點(diǎn)A,求間徑就是要求⊙O的直徑.再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____寸(一尺等于十寸),通過運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問題.請(qǐng)你補(bǔ)全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某民航飛機(jī)在大連海域失事,為調(diào)查失事原因,決定派海軍潛水員打撈飛機(jī)上的黑匣子,如圖所示,一潛水員在A處以每小時(shí)8海里的速度向正東方向劃行,在A處測(cè)得黑匣子B在北偏東60°的方向,劃行半小時(shí)后到達(dá)C處,測(cè)得黑匣子B在北偏東30°的方向,在潛水員繼續(xù)向東劃行多少小時(shí),距離黑匣子B最近,并求最近距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組借助無人飛機(jī)航拍,如圖,無人飛機(jī)從A處飛行至B處需12秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為3米/秒,則這架無人飛機(jī)的飛行高度為(結(jié)果保留根號(hào))__________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)觀測(cè)站,C離海岸線l的距離(即CD的長(zhǎng))為2,從A測(cè)得船C在北偏東45°的方向,從B測(cè)得船C在北偏東22.5°的方向,則AB的長(zhǎng)( )
A. 2 km B. (2+)km C. (4-2) km D. (4-) km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:如圖,在正方形ABCD中,點(diǎn)E為邊AB的中點(diǎn),聯(lián)結(jié)DE,點(diǎn)F在DE上CF=CD,過點(diǎn)F作FG⊥FC交AD于點(diǎn)G.
(1)求證:GF=GD;
(2)聯(lián)結(jié)AF,求證:AF⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某同學(xué)在一張硬紙板的中間畫了一條4cm長(zhǎng)的線段AB,過AB的中點(diǎn)O畫直線CO,使∠AOC=60°,在直線CO上取一點(diǎn)P,作△PAB并剪下(紙板足夠大),當(dāng)剪下的△PAB為直角三角形時(shí),AP的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com