【題目】如圖:在數(shù)軸上,點(diǎn)A表示a, 點(diǎn)B表示b, 點(diǎn)C表示c,b是最大的負(fù)整數(shù),且a,c滿足
________,_________,_____________
若將數(shù)軸折疊,使得點(diǎn)與點(diǎn)重合,則點(diǎn)與數(shù)____________表示的點(diǎn)重合;
點(diǎn)開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒個(gè)單位長(zhǎng)度和個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)秒鐘過(guò)后,
①請(qǐng)問(wèn):的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
②探究:若點(diǎn)向右運(yùn)動(dòng),點(diǎn)向左運(yùn)動(dòng),速度保持不變,的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
【答案】(1)-3,-1,5;(2)3;(3)①的值不隨著時(shí)間的變化而改變,值為14;②當(dāng)時(shí), 的值隨著時(shí)間的變化而改變;當(dāng)時(shí), 的值不隨著時(shí)間的變化而改變,值為26.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)即可得到結(jié)論;
(2)先求出對(duì)稱點(diǎn),即可得出答案;
(3)①t秒后,,,代入計(jì)算即可得到答案;
②先求出,再分當(dāng)時(shí)和當(dāng)時(shí),討論求解即可.
解:∵,
∴a+3=0,c5=0,
解得a=3,c=5,
∵b是最大的負(fù)整數(shù),
∴b=-1
故答案為:3,-1,5.
(2)點(diǎn)A與點(diǎn)C的中點(diǎn)對(duì)應(yīng)的數(shù)為:,
點(diǎn)B到1的距離為2,所以與點(diǎn)B重合的數(shù)是:1+2=3.
故答案為:3.
①t秒后,,
,
.
故的值不隨著時(shí)間的變化而改變;
②.
,
.
當(dāng)時(shí),原式的值隨著時(shí)間的變化而改變;
當(dāng)時(shí),原式的值不隨著時(shí)間的變化而改變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學(xué)家把數(shù)1,3,6,10,15,21,...稱為“三角形數(shù)”;把1,4,9,25,...稱為“正方形數(shù)”.同樣可以把1,5,12,22,...,等數(shù)稱為“五邊形數(shù)”.
將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:
(1)按照規(guī)律,表格中a=_______________,b=_________________,c=________________________
(2)觀察表中規(guī)律,第n個(gè)“正方形數(shù)”是_________________;若第n個(gè)“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個(gè)“五邊形數(shù)”是 ______________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:中,是的角平分線,是的邊上的高,過(guò)點(diǎn)做,交直線于點(diǎn).
如圖1,若,則___ ____;
若中的,則__ ____;(用表示)
如圖2,中的結(jié)論還成立嗎?若成立,說(shuō)明理由;若不成立,請(qǐng)求出.(用表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在白紙上畫兩條長(zhǎng)度均為且夾角為的線段、,然后你把一支長(zhǎng)度也為的鉛筆放在線段上,將這支鉛筆以線段上的一點(diǎn)為旋轉(zhuǎn)中心旋轉(zhuǎn)順時(shí)針旋轉(zhuǎn)一周。
(1)若與重合,當(dāng)旋轉(zhuǎn)角為______時(shí),這支鉛筆與線段、圍成的三角形是等腰三角形。
(2)點(diǎn)從逐漸向移動(dòng),記:
①若,當(dāng)旋轉(zhuǎn)角為、______、______、______、、______時(shí)這支鉛筆與線段、共圍成6個(gè)等腰三角形。
②當(dāng)這支鉛筆與線段、正好圍成5個(gè)等腰三角形時(shí),求的取值范圍。
③當(dāng)這支鉛筆與線段、正好圍成3個(gè)等腰三角形時(shí),直接寫出的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,BD是它的一條對(duì)角線,過(guò)A、C兩點(diǎn)分別作,,E、F為垂足.
(1)如圖,求證:;
(2)如圖,連接AC,設(shè)AC、BD交于點(diǎn)O,若.在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中的所有長(zhǎng)度是OE長(zhǎng)度2倍的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臺(tái)風(fēng)“利奇馬”給我縣帶來(lái)極端風(fēng)雨天氣,有一個(gè)水庫(kù)8月9日8:00的水位為﹣0.1m(以10m為警戒線,記高于警戒線的水位為正)在以后的6個(gè)時(shí)刻測(cè)得的水位升降情況如下(記上升為正,單位:m)
時(shí)刻 | 1 | 2 | 3 | 4 | 5 | 6 |
升降 | 0.5 | ﹣0.4 | 0.6 | ﹣0.5 | 0.2 | ﹣0.8 |
(1)根據(jù)記錄的數(shù)據(jù),求第2個(gè)時(shí)刻該水庫(kù)的實(shí)際水位;
(2)在這6個(gè)時(shí)刻中,該水庫(kù)最高實(shí)際水位是多少?
(3)經(jīng)過(guò)6次水位升降后,水庫(kù)的水位超過(guò)警戒線了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C處60 m的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡比為i=1∶的斜坡DB前進(jìn)30 m到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計(jì)算結(jié)果用根號(hào)表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一樓房AB后有一假山,其坡比i=1∶,山坡坡面上點(diǎn)E處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=25 m,與亭子距離CE=20 m.小麗從樓房頂測(cè)得點(diǎn)E的俯角為45°,求樓房AB的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校進(jìn)行校園美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,如果由甲隊(duì)先做20天,剩下的工程由甲、乙合作24天完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需要支付工程款3.5萬(wàn)元,乙隊(duì)施工一天需要支付工程款2萬(wàn)元:如果規(guī)定在70天內(nèi)完成這項(xiàng)工作,是由甲、乙兩隊(duì)單獨(dú)完成省錢?還是由甲乙合作完成該工程省錢?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com