【題目】在平面直角坐標系中,我們不妨把橫坐標和縱坐標都是整數(shù)的點稱為“中國結”.直線與 交于一點.
(1)求直線與軸的交點坐標;
(2)如圖,定點,動點在直線上運動.當線段最短時,求出點的坐標,并判斷點是否為“中國結”;
(3)當直線與的交點為“中國結”時,求滿足條件的值.
【答案】(1)(-1,0);(2)見解析;(3) 0, 2 ,3, 5, -1,-3.
【解析】
(1)令y=0即可求出直線與x軸的交點坐標;(2)當線段AB最短時,AB垂直直線y=x-3,可設直線AB的解析式為:y=-x+b,把A點代入即可求出B點坐標,即可判斷;(3)聯(lián)立直線與,再求出整點坐標對應的k值即可.
(1)令y=0,kx+k=0,則x=-1
∴直線與x軸的交點坐標(-1,0)
(2)當線段AB最短時,AB垂直直線y=x-3
∴設直線AB的解析式為:y=-x+b
∴0=5+b b=-5
所以直線AB的解析式為:y=-x-5
解 得
∴B(-1,-4),B點為中國結
(3)由題意得:
解得:
所以
∵交點為整數(shù),
∴k可取的整數(shù)解有0, 2 ,3, 5, -1,-3共6個
科目:初中數(shù)學 來源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊有場比賽,每場比賽都要分出勝負,每隊勝一場得分, 負一場得分,積分超過分才能獲得參賽資格.
(1)已知甲隊在初賽階段的積分為分,求甲隊初賽階段勝、負各多少場;
(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF,給出下列五個結論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC,其中正確結論的序號是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,點D,E分別在直線AB,BC上,且∠DEC=∠DCE.
(1)如圖①,若點D在線段AB的延長線上,∠A=60°,求證:EB=AD;
(2)如圖②,若點D在線段AB上,∠A=90°,求證:EB= AD;
(3)在(2)的條件下,若CD平分∠ACB,P是線段CD上任意一點,點Q,P關于BC對稱,且BE=2,請直接寫出△BPQ周長的最小值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠AOD交CD于E,OF⊥EO,OG⊥CD,∠D=50°,則下列結論:①∠AOE=60°;②∠DOF=25°;③∠GOE=∠DOF;④OF平分∠BOD,其中正確的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)有兩點P1(x1,y1)、P2(x2,y2),其兩點間的距離P1P2=,同時,當兩點所在的直線在坐標軸或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可化簡為|x2﹣x1|或|y2﹣y1|.已知一個三角形各頂點坐標為D(1,6)、E(4,2),平面直角坐標系中,在x軸上找一點P,使PD+PE的長度最短,則PD+PE的最短長度為__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖直角坐標系中直線 AB 與 x 軸正半軸、y 軸正半軸交于 A,B 兩點,已知 B(0,4),∠BAO=30°,P,Q 分別是線段 OB,AB 上的兩個動點,P 從 O 出發(fā)以每秒 3 個單位長度的速度向終點 B 運動,Q 從 B 出發(fā)以每秒 8 個單位長度的速度向終點 A 運動,兩點同時出發(fā),當其中一點到達終點時整個運動結束,設運動時間為 t(秒).
(1)求線段 AB 的長,及點 A 的坐標;
(2)t 為何值時,△BPQ 的面積為;
(3)若 C 為 OA 的中點,連接 QC,QP,以 QC,QP 為鄰邊作平行四邊形 PQCD,
①t 為何值時,點 D 恰好落在坐標軸上;
②是否存在時間 t 使 x 軸恰好將平行四邊形 PQCD 的面積分成 1∶3 的兩部分,若存在,直接寫出 t 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com