【題目】有一塊土地,如圖所示,已知AB=8,,BC=6,CD=24,AD=26,求這塊土地的面積.

【答案】96

【解析】

連接AC,根據(jù)勾股定理求出AC的長(zhǎng),再由勾股定理的逆定理判斷出ACD的形狀,根據(jù)S四邊形ABCD=SACD-SABC即可得出結(jié)論.


解:連接AC
AB=8,∠B=90°,BC=6,
AC=
CD=24AD=26
CD2=242=576AD2=262=676,AC2=1002=100,
AC2+CD2=AD2,
∴△ACD是直角三角形,
S四邊形ABCD=SACD-SABC
= ACCD- ABBC
=×10×24-×8×6
=120-24
=96
答:這塊土地的面積是96

故答案為:96

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩個(gè)等邊△ABC和△DEF(DEAB)如圖所示擺放,點(diǎn)DBC上的一點(diǎn)(B、C點(diǎn)外).把△DEF繞頂點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使得邊DE、DF與△ABC的邊(BC邊外)分別相交于點(diǎn)M、N

1)∠BMD和∠CDN相等嗎?

2)畫(huà)出使∠BMD和∠CDN相等的所有情況的圖形.

3)在(2)題中任選一種圖形說(shuō)明∠BMD和∠CDN相等的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果∠α和∠β互補(bǔ),且∠α>β,則下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=x2﹣2mx﹣3m2(m>0)與x軸交于A、B兩點(diǎn),A點(diǎn)在B點(diǎn)左邊,與y軸交于C點(diǎn),頂點(diǎn)為M.
(1)當(dāng)m=1時(shí),求點(diǎn)A、B、M坐標(biāo);
(2)如圖(1)的條件下,若P為拋物線上一個(gè)動(dòng)點(diǎn),以AP為斜邊的等腰直角的直角頂點(diǎn)Q在對(duì)稱(chēng)軸上,(A、P、Q按順時(shí)針?lè)较蚺帕校,求P點(diǎn)坐標(biāo).

(3)如圖2,若一次函數(shù)y=kx+b過(guò)B點(diǎn)且與拋物線只有一個(gè)公共點(diǎn),平移直線y=kx+b,使其過(guò)拋物線的頂點(diǎn)M,與拋物線另一個(gè)交點(diǎn)為D,與x軸交于F點(diǎn),當(dāng)m變化時(shí),求證:DF:MF是定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的面積為6AC3,現(xiàn)將ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的處,P為直線AD上的任意一點(diǎn),則線段BP的最短長(zhǎng)度為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在ABCD中(非矩形),連接AC,△ABC為直角三角形,若AB=4,AC=3,則AD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,P為AD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PE與CD相交于點(diǎn)O,且OE=OD.

(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小磊老師從甲地去往10千米的乙地,開(kāi)始以一定的速度行駛,之后由于道路維修,速度變?yōu)樵瓉?lái)的四分之一,過(guò)了維修道路后又變?yōu)樵瓉?lái)的速度到達(dá)乙地.設(shè)小磊老師行駛的時(shí)間為x(分鐘),行駛的路程為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,則小磊老師從甲地到達(dá)乙地所用的時(shí)間是( )

A.15分鐘
B.20分鐘
C.25分鐘
D.30分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過(guò)平移后得到△A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+6,b-2).

(1)直接寫(xiě)出點(diǎn)C1的坐標(biāo);

(2)在圖中畫(huà)出△A1B1C1;

(3)求△AOA1的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案