【題目】如圖,點(diǎn)E在正方形ABCD的邊CD上,把△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°至△ABF位置,如果AB= ,∠EAD=30°,那么點(diǎn)E與點(diǎn)F之間的距離等于 .
【答案】2
【解析】解:連接EF,如圖,
由旋轉(zhuǎn)性質(zhì)可知:△ADE≌△ABF,
∴AE=AF,∠EAD=∠FAB,
∵∠EAD+∠BAE=90°,
∴∠FAB+∠BAE=90°,
即∠EAF=90°,
∵∠EAD=30°,AB= ,
∴AE=AF=2,
∴EF=2 .
所以答案是:2 .
【考點(diǎn)精析】利用正方形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.
(1)求圓的半徑和點(diǎn)D的坐標(biāo);
(2)點(diǎn)A的坐標(biāo)是 , 點(diǎn)B的坐標(biāo)是 , sin∠ACB;
(3)求經(jīng)過C、A、B三點(diǎn)的拋物線解析式;
(4)設(shè)拋物線的頂點(diǎn)為F,證明直線FA與⊙D相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=2,ED=4,
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且經(jīng)過點(diǎn)(﹣1,0),康康依據(jù)圖象寫出了四個結(jié)論:
①如果點(diǎn)(﹣ ,y1)和(2,y2)都在拋物線上,那么y1<y2;
②b2﹣4ac>0;
③m(am+b)<a+b(m≠1的實(shí)數(shù));
④ =﹣3.
康康所寫的四個結(jié)論中,正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(-2,1)、B(n,-2)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點(diǎn).
(1) 求此反比例函數(shù)和一次函數(shù)的解析式;
(2) 根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中, 厘米, 厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.當(dāng)點(diǎn)Q的運(yùn)動速度為_______ 厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-3x與雙曲線y=在第四象限內(nèi)的部分相交于點(diǎn)A(a,-6),將這條直線向
上平移后與該雙曲線交于點(diǎn)M,且△AOM的面積為3.
(1)求k的值;
(2)求平移后得到的直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com