【題目】如圖,已知正方形ABCD,將一塊等腰直角三角板的銳角頂點與A重合,并將三角板繞A點旋轉(zhuǎn),如圖1,使它的斜邊與BD交于點H,一條直角邊與CD交于點G.

(1)請適當添加輔助線,通過三角形相似,求出 的值;
(2)連接GH,判斷GH與AF的位置關(guān)系,并證明;
(3)如圖2,將三角板旋轉(zhuǎn)至點F恰好在DC的延長線上時,若AD=3 ,AF=5 .求DG的長.

【答案】
(1)

解:連接AC,

∵四邊形ABCD是正方形,

∴∠BAC=∠ABD=∠ACD=45°,cos∠BAC=cos45°= ,

又∵△AEF是等腰直角三角形,

∴∠EAF=45°,

∴∠BAH+∠FAC=∠FAC+∠EAC=45°,

∴∠BAH=∠EAC,

∴△BAH∽△ACG,

= = ;


(2)

解:GH⊥AF,理由如下:

∵在Rt△AEF中,cos∠EAF=cos45°= = ,

= =

又∵∠HAG=∠EAF

∴△HAG∽△EAF,

∴∠AHG=∠E=90°,

∴GH⊥AF;


(3)

解:∵在Rt△AGH中,sin∠GAH=sin45°= = ,

∴AG= GH,

又∵∠ADG=∠E=90°,∠AGD=∠FGE,

∴△AGD∽△FGE,

= = ,

又∵在Rt△AEF中,AF=5 ,

∴EF=5,

= ,

= ,

= ,

∴可設(shè)GH為3x,則GF=5x,F(xiàn)H= =4x,

∴AF=AH+FH=3x+4x=5 ,

∴x= ,

∴AG= GH= ×3× =

∴GE=AE﹣AG=5﹣ = ,

又∵ = = ,

=

∴DG=


【解析】(1)連接AC,根據(jù)正方形的性質(zhì)的∠BAC=∠ABP=∠ABP=45°,cos∠BAC=cos45°= ,根據(jù)等腰直角三角形的性質(zhì)得到∠EAF=45°,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(2)根據(jù)三角函數(shù)的定義得到 = = ,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)根據(jù)三角函數(shù)的定義得到AG= GH,根據(jù)相似三角形的性質(zhì)得到 = = ,設(shè)GH為3x,則GF=5x,根據(jù)勾股定理得到FH= =4x,得到AG= GH= ×3× = ,于是得到結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA=AB,∠OAB=90°,反比例函數(shù)y= (x>0)的圖象經(jīng)過A,B兩點.若點A的坐標為(n,1),則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā),勻速運動,快車離乙地的路程y1(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中AB所示;慢車離乙地的路程y2(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中線段OC所示,根據(jù)圖象進行以下研究.

解讀信息:
(1)甲,乙兩地之間的距離為 km;
(2)線段AB的解析式為;線段OC的解析式為;
(3)設(shè)快,慢車之間的距離為y(km),求y與慢車行駛時間x(h)的函數(shù)關(guān)系式,并畫出函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺舉辦的“中國漢字聽寫大會”節(jié)目受到中學生的廣泛關(guān)注,某中學為了了解學生對觀看“中國漢字聽寫大會”節(jié)目的喜愛程度,對該校部分學生進行了隨機抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計圖.在條形圖中,從左向右依次為A類(非常喜歡),B類(較喜歡),C類(一般),D類(不喜歡),請結(jié)合兩幅統(tǒng)計圖,回答下列問題

(1)寫出本次抽樣調(diào)查的樣本容量;
(2)請補全兩幅統(tǒng)計圖;
(3)若該校有2000名學生.請你估計觀看“中國漢字聽寫大會”節(jié)目不喜歡的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年是襄陽“創(chuàng)建文明城市”工作的第二年,為了更好地做好“創(chuàng)建文明城市”工作,市教育局相關(guān)部門對某中學學生“創(chuàng)文”的知曉率,采取隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果分為“非常了解”,“比校了解”,“基本了解”,和“不了解”四個等級.小輝根據(jù)調(diào)查結(jié)果繪制了如圖所示的統(tǒng)計圖,請根據(jù)提供的信息回答問題:
(1)本次調(diào)查中,樣本容量是;
(2)扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)的圓心角的度數(shù)是;在該校2000名學生中隨機提問一名學生,對“創(chuàng)文”不了解的概率估計值為;
(3)請補全頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約登山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息,下列說法正確的個數(shù)為( ) (1 )甲登山上升的速度是每分鐘10米;(2)乙在A地時距地面的高度b為30米;(3)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,乙登山1分鐘時,距地面的高度為15米;(4)登山時間為4分鐘,9分鐘,15分鐘時,甲、乙兩人距地面的高度差為50米.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=k(x+1)(x﹣ )與x軸交于點A、B,與y軸交于點C,則能使△ABC為等腰三角形拋物線的條數(shù)是(
A.5
B.4
C.3
D.2

查看答案和解析>>

同步練習冊答案